priyankloco's picture
update model card README.md
6ef07a4
|
raw
history blame
3 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: resnet-152-finetuned_resnet152-adam-optimizer5e-4-autotags
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9304761904761905

resnet-152-finetuned_resnet152-adam-optimizer5e-4-autotags

This model is a fine-tuned version of microsoft/resnet-152 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2399
  • Accuracy: 0.9305

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.4009 0.99 65 2.1414 0.3971
0.9201 1.99 130 0.8123 0.7210
0.7575 2.99 195 0.5730 0.8124
0.4792 3.99 260 0.4166 0.8648
0.4253 4.99 325 0.3811 0.8810
0.3331 5.99 390 0.4290 0.8705
0.2347 6.99 455 0.4600 0.8952
0.1732 7.99 520 0.3018 0.8924
0.1777 8.99 585 0.4851 0.8914
0.1298 9.99 650 0.2941 0.92
0.1164 10.99 715 0.3915 0.9095
0.1284 11.99 780 0.3701 0.9152
0.0986 12.99 845 0.3416 0.9171
0.0944 13.99 910 0.3145 0.9210
0.0929 14.99 975 0.2677 0.9229
0.1014 15.99 1040 0.2745 0.9295
0.0971 16.99 1105 0.2932 0.9267
0.0691 17.99 1170 0.2174 0.9333
0.0557 18.99 1235 0.2233 0.9324
0.06 19.99 1300 0.2399 0.9305

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.1+cu117
  • Datasets 2.11.0
  • Tokenizers 0.13.2