File size: 9,423 Bytes
f572c1f
 
 
 
 
 
 
 
 
 
 
 
 
cd1ad1f
f572c1f
cd1ad1f
f572c1f
 
 
 
 
 
 
3e58fbe
f572c1f
 
 
 
0c1d199
f572c1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
835ba8f
f572c1f
 
 
 
 
 
0bd3af2
f572c1f
 
1458f66
f572c1f
 
 
 
 
 
835ba8f
240b512
b0cc527
f572c1f
 
0c1d199
f572c1f
 
 
 
 
 
 
 
 
 
 
8887186
f572c1f
 
 
 
 
 
8887186
 
 
 
 
f572c1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8887186
f572c1f
 
b1b5fbf
 
 
 
 
 
 
 
 
 
f572c1f
 
 
b1b5fbf
 
f572c1f
 
 
b1b5fbf
f572c1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bd3af2
f572c1f
 
0bd3af2
f572c1f
 
0bd3af2
f572c1f
8887186
f572c1f
 
 
b0cc527
f572c1f
8887186
f572c1f
4f8d184
cd1ad1f
 
f572c1f
1458f66
 
 
 
4f8d184
 
 
 
 
 
 
 
 
1458f66
 
bfcc611
f572c1f
 
bf447a4
4f8d184
cd1ad1f
 
 
1458f66
cd1ad1f
bfcc611
 
cd1ad1f
 
bfcc611
4f8d184
f572c1f
 
 
 
 
cd1ad1f
f572c1f
 
 
 
 
 
 
 
 
 
 
cd1ad1f
f572c1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
---
license: apache-2.0
language:
- ar
datasets:
- MIRACL
tags:
- miniDense
- passage-retrieval
- knowledge-distillation
- middle-training
- sentence-transformers
pretty_name: >-
  miniDense is a family of High-quality, Light Weight and Easy deploy
  multilingual embedders / retrievers, primarily focussed on Indo-Aryan and
  Indo-Dravidian Languages.
library_name: transformers
pipeline_tag: sentence-similarity
---


<center>
<img src="./logo.png" width=150/>
  <img src="./ar_intro.png" width=180%/>
</center>


<center>
<img src="./ar_metrics_1.png" width=150%/>
  <b><p>Table 1: Arabic retrieval performance on the MIRACL dev set (measured by nDCG@10)</p></b>
</center>


## Architecture:

- Model: BERT.
- Tokenizer: XLM-Roberta's Tokenizer.
- Vocab: 250K
  
<br/>

<center>
  <h1> Table Of Contents </h1>
</center>


- [Request, Terms, Disclaimers:](#request-terms-disclaimers)
- [Detailed comparison & Our Contribution:](#detailed-comparison--our-contribution)
- [ONNX & GGUF Status:](#onnx--gguf-status)
- [Usage:](#usage)
    - [With Sentence Transformers:](#with-sentence-transformers)
    - [With Huggingface Transformers:](#with-huggingface-transformers)
- [FAQs](#faqs)
    - [How can I reduce overall inference cost?](#how-can-i-reduce-overall-inference-cost)
    - [How do I reduce vector storage cost?](#how-do-i-reduce-vector-storage-cost)
    - [How do I offer hybrid search to improve accuracy?](#how-do-i-offer-hybrid-search-to-improve-accuracy)
- [MTEB numbers](#mteb-numbers)
- [Roadmap](#roadmap)
- [Notes on Reproducing:](#notes-on-reproducing)
- [Reference:](#reference)
- [Note on model bias](#note-on-model-bias)


# Request, Terms, Disclaimers:

[https://github.com/sponsors/PrithivirajDamodaran](https://github.com/sponsors/PrithivirajDamodaran)

<center>
  <img src="./ar_terms.png" width=250%/>
</center>


# Detailed comparison & Our Contribution:

English language famously have **all-minilm** series models which were great for quick experimentations and for certain production workloads. The Idea is to have same for the other popular langauges, starting with Indo-Aryan and Indo-Dravidian languages. Our innovation is in bringing high quality models which easy to serve and embeddings are cheaper to store without ANY pretraining or expensive finetuning. For instance, **all-minilm** are finetuned on 1-Billion pairs. We offer a very lean model but with a huge vocabulary - around 250K.
We will add more details here.


<center>
  <img src="./ar_metrics_2.png" width=120%/>
  <b><p>Table 2: Detailed Arabic retrieval performance on the MIRACL dev set (measured by nDCG@10)</p></b>
  
</center>

Full set of evaluation numbers for our model

```python
{'NDCG@1': 0.50449, 'NDCG@3': 0.52437, 'NDCG@5': 0.55649, 'NDCG@10': 0.60599, 'NDCG@100': 0.64745, 'NDCG@1000': 0.65717}
{'MAP@1': 0.34169, 'MAP@3': 0.45784, 'MAP@5': 0.48922, 'MAP@10': 0.51316, 'MAP@100': 0.53012, 'MAP@1000': 0.53069}
{'Recall@10': 0.72479, 'Recall@50': 0.87686, 'Recall@100': 0.91178, 'Recall@200': 0.93593, 'Recall@500': 0.96254, 'Recall@1000': 0.97557}
{'P@1': 0.50449, 'P@3': 0.29604, 'P@5': 0.21581, 'P@10': 0.13149, 'P@100': 0.01771, 'P@1000': 0.0019}
{'MRR@10': 0.61833, 'MRR@100': 0.62314, 'MRR@1000': 0.62329}
```

<br/>

# ONNX & GGUF Status:

|Variant| Status |
|:---:|:---:|
|FP16 ONNX | ✅ |
|GGUF | WIP| 

# Usage:

#### With Sentence Transformers:

```python
from sentence_transformers import SentenceTransformer
import scipy.spatial


model = SentenceTransformer('prithivida/miniDense_arabic_v1')

corpus = [
    'رجل يأكل',
    'الناس يأكلون قطعة خبز',
    'فتاة تحمل طفل',
    'رجل يركب حصان',
    'امرأة تعزف على الجيتار',
    'شخصان يدفعان عربة عبر الغابة',
    'شخص يركب حصانًا أبيض في حقل مغلق',
    'قرد يقرع الطبل',
    'فهد يطارد فريسة',
    'أكلت النساء بعض سلطات الفاكهة'
]

queries = [
    'شخص يأكل المعكرونة',
    'شخص يرتدي زي الغوريلا يعزف على الطبل'
]



corpus_embeddings = model.encode(corpus)
query_embeddings = model.encode(queries)

# Find the closest 3 sentences of the corpus for each query sentence based on cosine similarity
closest_n = 3
for query, query_embedding in zip(queries, query_embeddings):
    distances = scipy.spatial.distance.cdist([query_embedding], corpus_embeddings, "cosine")[0]

    results = zip(range(len(distances)), distances)
    results = sorted(results, key=lambda x: x[1])

    print("\n======================\n")
    print("Query:", query)
    print("\nTop 3 most similar sentences in corpus:\n")

    for idx, distance in results[0:closest_n]:
        print(corpus[idx].strip(), "(Score: %.4f)" % (1-distance))

# Optional: How to quantize the embeddings
# binary_embeddings = quantize_embeddings(embeddings, precision="ubinary")


```

#### With Huggingface Transformers:
- T.B.A

# FAQs:

#### How can I reduce overall inference cost?
- You can host these models without heavy torch dependency using the ONNX flavours of these models via [FlashEmbed](https://github.com/PrithivirajDamodaran/flashembed) library.

#### How do I reduce vector storage cost?
[Use Binary and Scalar Quantisation](https://huggingface.co/blog/embedding-quantization)

#### How do I offer hybrid search to improve accuracy?
MIRACL paper shows simply combining BM25 is a good starting point for a Hybrid option: 
The below numbers are with mDPR model, but miniDense_arabic_v1 should give a even better hybrid performance.

| Language  | ISO | nDCG@10 BM25 | nDCG@10 mDPR | nDCG@10 Hybrid |
|-----------|-----|--------------|--------------|----------------|
| **Arabic**     | **ar**  | **0.395**        | **0.499**        | **0.673**          |

*Note: MIRACL paper shows a different (higher) value for BM25 Arabic, So we are taking that value from BGE-M3 paper, rest all are form the MIRACL paper.*

# MTEB Retrieval numbers:
MTEB is a general purpose embedding evaluation benchmark covering wide range of tasks, but miniDense models (like BGE-M3) are predominantly tuned for retireval tasks aimed at search & IR based usecases.
So it makes sense to evaluate our models in retrieval slice of the MTEB benchmark.

#### MIRACL Retrieval

Refer tables above 

#### Sadeem Question Retrieval 

<center>
<img src="./ar_metrics_6.png" width=150%/>
  <b><p>Table 3: Detailed Arabic retrieval performance on the SadeemQA eval set (measured by nDCG@10)</p></b>
</center>



#### Long Document Retrieval 

This is very ambitious eval because we have not trained for long context, the max_len was 512 for all the models below except BGE-M3 which had 8192 context and finetuned for long doc.

<center>
<img src="./ar_metrics_4.png" width=150%/>
  <b><p>Table 4: Detailed Arabic retrieval performance on the MultiLongDoc dev set (measured by nDCG@10)</p></b>
</center>


#### X-lingual Retrieval 

Except BGE-M3 all are monolingual arabic models so they have no notion of any other languages. But the below table shows how our model understands arabic in context with other languages.
This explains it's overall competitive performance when compared to models that are a LOT larger.

<center>
<img src="./ar_metrics_5.png" width=120%/>
  <b><p>Table 5: Detailed Arabic retrieval performance on the 3 X-lingual test set (measured by nDCG@10)</p></b>
</center>

<br/>

# Roadmap
We will add miniDense series of models for all popular languages as we see fit or based on community requests in phases. Some of the languages we have in our list are

- Spanish
- Tamil
- German
- English ?


# Notes on reproducing:

We welcome anyone to reproduce our results. Here are some tips and observations:

- Use CLS Pooling (not mean) and Inner Product (not cosine).
- There *may be* minor differences in the numbers when reproducing, for instance BGE-M3 reports a nDCG@10 of 59.3 for MIRACL hindi and we Observed only 58.9.

Here are our numbers for the full hindi run on BGE-M3

```python
{'NDCG@1': 0.49714, 'NDCG@3': 0.5115, 'NDCG@5': 0.53908, 'NDCG@10': 0.58936, 'NDCG@100': 0.6457, 'NDCG@1000': 0.65336}
{'MAP@1': 0.28845, 'MAP@3': 0.42424, 'MAP@5': 0.46455, 'MAP@10': 0.49955, 'MAP@100': 0.51886, 'MAP@1000': 0.51933}
{'Recall@10': 0.73032, 'Recall@50': 0.8987, 'Recall@100': 0.93974, 'Recall@200': 0.95763, 'Recall@500': 0.97813, 'Recall@1000': 0.9902}
{'P@1': 0.49714, 'P@3': 0.33048, 'P@5': 0.24629, 'P@10': 0.15543, 'P@100': 0.0202, 'P@1000': 0.00212}
{'MRR@10': 0.60893, 'MRR@100': 0.615, 'MRR@1000': 0.6151}
```

Fair warning BGE-M3 is $ expensive to evaluate, probably* that's why it's not part of any of the retrieval slice of MTEB benchmarks.


# Reference:
- [All Cohere numbers are copied form here](https://huggingface.co/datasets/Cohere/miracl-en-queries-22-12)
- [BGE M3-Embedding: Multi-Lingual, Multi-Functionality,
Multi-Granularity Text Embeddings Through Self-Knowledge Distillation](https://arxiv.org/pdf/2402.03216.pdf)
- [Making a MIRACL: Multilingual Information Retrieval
Across a Continuum of Languages](https://arxiv.org/pdf/2210.09984.pdf)
- [IndicIRSuite: Multilingual Dataset and Neural
Information Models for Indian Languages](https://arxiv.org/pdf/2312.09508)



# Note on model bias:
- Like any model this model might carry inherent biases from the base models and the datasets it was pretrained and finetuned on. Please use responsibly.