File size: 3,249 Bytes
5d81b2b 7ff4aff 3eecabc 7ff4aff 4af0eb2 7ff4aff 4af0eb2 7ff4aff 4af0eb2 7ff4aff 4af0eb2 7ff4aff 4af0eb2 7ff4aff 4af0eb2 7ff4aff 4af0eb2 7ff4aff 4af0eb2 7ff4aff 4af0eb2 7ff4aff 4af0eb2 7ff4aff 4af0eb2 7ff4aff 4af0eb2 7ff4aff 4af0eb2 7ff4aff 4af0eb2 7ff4aff 4af0eb2 7ff4aff 4af0eb2 7ff4aff 4af0eb2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
---
license: creativeml-openrail-m
datasets:
- prithivMLmods/Spam-Text-Detect-Analysis
language:
- en
base_model:
- google-bert/bert-base-uncased
pipeline_tag: text-classification
library_name: transformers
---
### **SPAM DETECTION UNCASED [ SPAM / HAM ]**
This implementation leverages **BERT (Bidirectional Encoder Representations from Transformers)** for binary classification (Spam / Ham) using sequence classification. The model uses the **`prithivMLmods/Spam-Text-Detect-Analysis` dataset** and integrates **Weights & Biases (wandb)** for comprehensive experiment tracking.
---
## **π οΈ Overview**
### **Core Details:**
- **Model:** BERT for sequence classification
Pre-trained Model: `bert-base-uncased`
- **Task:** Spam detection - Binary classification task (Spam vs Ham).
- **Metrics Tracked:**
- Accuracy
- Precision
- Recall
- F1 Score
- Evaluation loss
---
## **π Key Results**
Results were obtained using BERT and the provided training dataset:
- **Validation Accuracy:** **0.9937**
- **Precision:** **0.9931**
- **Recall:** **0.9597**
- **F1 Score:** **0.9761**
---
## **π Model Training Details**
### **Model Architecture:**
The model uses `bert-base-uncased` as the pre-trained backbone and is fine-tuned for the sequence classification task.
### **Training Parameters:**
- **Learning Rate:** 2e-5
- **Batch Size:** 16
- **Epochs:** 3
- **Loss:** Cross-Entropy
---
## **π How to Train the Model**
1. **Clone Repository:**
```bash
git clone <repository-url>
cd <project-directory>
```
2. **Install Dependencies:**
Install all necessary dependencies.
```bash
pip install -r requirements.txt
```
or manually:
```bash
pip install transformers datasets wandb scikit-learn
```
3. **Train the Model:**
Assuming you have a script like `train.py`, run:
```python
from train import main
```
---
## **β¨ Weights & Biases Integration**
### Why Use wandb?
- **Monitor experiments in real time** via visualization.
- Log metrics such as loss, accuracy, precision, recall, and F1 score.
- Provides a history of past runs and their comparisons.
### Initialize Weights & Biases
Include this snippet in your training script:
```python
import wandb
wandb.init(project="spam-detection")
```
---
## π **Directory Structure**
The directory is organized to ensure scalability and clear separation of components:
```
project-directory/
β
βββ data/ # Dataset processing scripts
βββ wandb/ # Logged artifacts from wandb runs
βββ results/ # Save training and evaluation results
βββ model/ # Trained model checkpoints
βββ requirements.txt # List of dependencies
βββ train.py # Main script for training the model
```
---
## π Dataset Information
The training dataset comes from **Spam-Text-Detect-Analysis** available on Hugging Face:
- **Dataset Link:** [Spam Text Detection Dataset - Hugging Face](https://huggingface.co/datasets)
Dataset size:
- **5.57k entries**
---
Let me know if you need assistance setting up the training pipeline, optimizing metrics, visualizing with wandb, or deploying this fine-tuned model. π |