lbourdois commited on
Commit
d84cd76
·
verified ·
1 Parent(s): 97f8117

Improve language tag

Browse files

Hi! As the model is multilingual, this is a PR to add other languages than English to the language tag to improve the referencing. Note that 29 languages are announced in the README, but only 13 are explicitly listed. I was therefore only able to add these 13 languages.

Files changed (1) hide show
  1. README.md +229 -225
README.md CHANGED
@@ -1,226 +1,230 @@
1
- ---
2
- license: apache-2.0
3
- language:
4
- - en
5
- - zh
6
- - de
7
- base_model:
8
- - Qwen/Qwen2.5-14B-Instruct
9
- pipeline_tag: text-generation
10
- library_name: transformers
11
- tags:
12
- - StreamlinedMemory
13
- - Code
14
- - Math
15
- - Qwen
16
- - text-generation-inference
17
- - trl
18
- model-index:
19
- - name: Sombrero-Opus-14B-Sm2
20
- results:
21
- - task:
22
- type: text-generation
23
- name: Text Generation
24
- dataset:
25
- name: IFEval (0-Shot)
26
- type: wis-k/instruction-following-eval
27
- split: train
28
- args:
29
- num_few_shot: 0
30
- metrics:
31
- - type: inst_level_strict_acc and prompt_level_strict_acc
32
- value: 42.72
33
- name: averaged accuracy
34
- source:
35
- url: >-
36
- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm2
37
- name: Open LLM Leaderboard
38
- - task:
39
- type: text-generation
40
- name: Text Generation
41
- dataset:
42
- name: BBH (3-Shot)
43
- type: SaylorTwift/bbh
44
- split: test
45
- args:
46
- num_few_shot: 3
47
- metrics:
48
- - type: acc_norm
49
- value: 51.25
50
- name: normalized accuracy
51
- source:
52
- url: >-
53
- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm2
54
- name: Open LLM Leaderboard
55
- - task:
56
- type: text-generation
57
- name: Text Generation
58
- dataset:
59
- name: MATH Lvl 5 (4-Shot)
60
- type: lighteval/MATH-Hard
61
- split: test
62
- args:
63
- num_few_shot: 4
64
- metrics:
65
- - type: exact_match
66
- value: 48.64
67
- name: exact match
68
- source:
69
- url: >-
70
- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm2
71
- name: Open LLM Leaderboard
72
- - task:
73
- type: text-generation
74
- name: Text Generation
75
- dataset:
76
- name: GPQA (0-shot)
77
- type: Idavidrein/gpqa
78
- split: train
79
- args:
80
- num_few_shot: 0
81
- metrics:
82
- - type: acc_norm
83
- value: 18.46
84
- name: acc_norm
85
- source:
86
- url: >-
87
- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm2
88
- name: Open LLM Leaderboard
89
- - task:
90
- type: text-generation
91
- name: Text Generation
92
- dataset:
93
- name: MuSR (0-shot)
94
- type: TAUR-Lab/MuSR
95
- args:
96
- num_few_shot: 0
97
- metrics:
98
- - type: acc_norm
99
- value: 24.53
100
- name: acc_norm
101
- source:
102
- url: >-
103
- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm2
104
- name: Open LLM Leaderboard
105
- - task:
106
- type: text-generation
107
- name: Text Generation
108
- dataset:
109
- name: MMLU-PRO (5-shot)
110
- type: TIGER-Lab/MMLU-Pro
111
- config: main
112
- split: test
113
- args:
114
- num_few_shot: 5
115
- metrics:
116
- - type: acc
117
- value: 48.28
118
- name: accuracy
119
- source:
120
- url: >-
121
- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm2
122
- name: Open LLM Leaderboard
123
- ---
124
- ![dsfsd.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/XyiRvMFsyoI4fswTZ4YPz.png)
125
-
126
- # **Sombrero-Opus-14B-Sm2**
127
-
128
- > Sombrero-Opus-14B-Sm2 is based on the Qwen 2.5 14B modality architecture, designed to enhance coding efficiency and computational reasoning. This model is optimized for streamlined memory usage, avoiding unwanted textual token generation, and excelling in coding, explanatory reasoning, mathematical problem-solving, and technical tasks. It has been fine-tuned using specialized datasets to improve code generation, structured programming logic, and problem-solving capabilities.
129
-
130
- ## **Key Improvements**
131
- 1. **Optimized for Coding**: The model specializes in generating high-quality, structured code with minimal redundant tokens, ensuring efficient execution.
132
- 2. **Enhanced Memory Utilization**: Implements streamlined memory optimization to reduce computational overhead and improve performance.
133
- 3. **Superior Reasoning Capabilities**: Excels in solving complex mathematical and algorithmic problems with logical and structured explanations.
134
- 4. **Long-Context Support**: Supports up to 128K tokens for input context and can generate up to 8K tokens in a single output, making it ideal for detailed coding responses.
135
- 5. **Reduced Unwanted Textual Tokens**: Ensures a more focused output for coding tasks by minimizing excessive textual responses.
136
-
137
- ## **Quickstart with transformers**
138
-
139
- Here is a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and generate content:
140
-
141
- ```python
142
- from transformers import AutoModelForCausalLM, AutoTokenizer
143
-
144
- model_name = "prithivMLmods/Sombrero-Opus-14B-Sm2"
145
-
146
- model = AutoModelForCausalLM.from_pretrained(
147
- model_name,
148
- torch_dtype="auto",
149
- device_map="auto"
150
- )
151
- tokenizer = AutoTokenizer.from_pretrained(model_name)
152
-
153
- prompt = "Write a Python function to find the Fibonacci sequence."
154
- messages = [
155
- {"role": "system", "content": "You are an advanced coding assistant."},
156
- {"role": "user", "content": prompt}
157
- ]
158
- text = tokenizer.apply_chat_template(
159
- messages,
160
- tokenize=False,
161
- add_generation_prompt=True
162
- )
163
- model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
164
-
165
- generated_ids = model.generate(
166
- **model_inputs,
167
- max_new_tokens=512
168
- )
169
- generated_ids = [
170
- output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
171
- ]
172
-
173
- response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
174
- print(response)
175
- ```
176
-
177
- ## **Intended Use**
178
- 1. **Code Generation & Optimization**:
179
- Designed for developers, assisting in writing, refactoring, and optimizing code across multiple programming languages.
180
-
181
- 2. **Algorithm & Mathematical Problem Solving**:
182
- Provides precise explanations and solutions for computational and mathematical problems.
183
-
184
- 3. **Technical Explanations & Documentation**:
185
- Generates clear and structured explanations for coding concepts, libraries, and APIs.
186
-
187
- 4. **Debugging Assistance**:
188
- Helps analyze code snippets, detect errors, and suggest corrections.
189
-
190
- 5. **Educational Use**:
191
- Assists students and learners by breaking down complex programming topics into easily understandable sections.
192
-
193
- 6. **Structured Data Processing**:
194
- Capable of analyzing and generating structured outputs, such as JSON, XML, and tables, making it ideal for data science applications.
195
-
196
- ## **Limitations**
197
- 1. **Hardware Requirements**:
198
- Requires high-memory GPUs or TPUs due to its large parameter size and long-context support.
199
-
200
- 2. **Potential Bias in Responses**:
201
- While designed to be neutral, outputs may still reflect biases present in training data.
202
-
203
- 3. **Inconsistent Outputs in Creative Tasks**:
204
- May produce variable results in storytelling and non-technical topics.
205
-
206
- 4. **Limited Real-World Awareness**:
207
- Does not have access to real-time events beyond its training cutoff.
208
-
209
- 5. **Error Propagation in Extended Outputs**:
210
- Minor errors in early responses may affect overall coherence in long-form code outputs.
211
-
212
- 6. **Prompt Sensitivity**:
213
- The effectiveness of responses may depend on how well the input prompt is structured.
214
- # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
215
- Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/prithivMLmods__Sombrero-Opus-14B-Sm2-details)!
216
- Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=prithivMLmods%2FSombrero-Opus-14B-Sm2&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!
217
-
218
- | Metric |Value (%)|
219
- |-------------------|--------:|
220
- |**Average** | 38.98|
221
- |IFEval (0-Shot) | 42.72|
222
- |BBH (3-Shot) | 51.25|
223
- |MATH Lvl 5 (4-Shot)| 48.64|
224
- |GPQA (0-shot) | 18.46|
225
- |MuSR (0-shot) | 24.53|
 
 
 
 
226
  |MMLU-PRO (5-shot) | 48.28|
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - zho
5
+ - eng
6
+ - fra
7
+ - spa
8
+ - por
9
+ - deu
10
+ - ita
11
+ - rus
12
+ - jpn
13
+ - kor
14
+ - vie
15
+ - tha
16
+ - ara
17
+ base_model:
18
+ - Qwen/Qwen2.5-14B-Instruct
19
+ pipeline_tag: text-generation
20
+ library_name: transformers
21
+ tags:
22
+ - StreamlinedMemory
23
+ - Code
24
+ - Math
25
+ - Qwen
26
+ - text-generation-inference
27
+ - trl
28
+ model-index:
29
+ - name: Sombrero-Opus-14B-Sm2
30
+ results:
31
+ - task:
32
+ type: text-generation
33
+ name: Text Generation
34
+ dataset:
35
+ name: IFEval (0-Shot)
36
+ type: wis-k/instruction-following-eval
37
+ split: train
38
+ args:
39
+ num_few_shot: 0
40
+ metrics:
41
+ - type: inst_level_strict_acc and prompt_level_strict_acc
42
+ value: 42.72
43
+ name: averaged accuracy
44
+ source:
45
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm2
46
+ name: Open LLM Leaderboard
47
+ - task:
48
+ type: text-generation
49
+ name: Text Generation
50
+ dataset:
51
+ name: BBH (3-Shot)
52
+ type: SaylorTwift/bbh
53
+ split: test
54
+ args:
55
+ num_few_shot: 3
56
+ metrics:
57
+ - type: acc_norm
58
+ value: 51.25
59
+ name: normalized accuracy
60
+ source:
61
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm2
62
+ name: Open LLM Leaderboard
63
+ - task:
64
+ type: text-generation
65
+ name: Text Generation
66
+ dataset:
67
+ name: MATH Lvl 5 (4-Shot)
68
+ type: lighteval/MATH-Hard
69
+ split: test
70
+ args:
71
+ num_few_shot: 4
72
+ metrics:
73
+ - type: exact_match
74
+ value: 48.64
75
+ name: exact match
76
+ source:
77
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm2
78
+ name: Open LLM Leaderboard
79
+ - task:
80
+ type: text-generation
81
+ name: Text Generation
82
+ dataset:
83
+ name: GPQA (0-shot)
84
+ type: Idavidrein/gpqa
85
+ split: train
86
+ args:
87
+ num_few_shot: 0
88
+ metrics:
89
+ - type: acc_norm
90
+ value: 18.46
91
+ name: acc_norm
92
+ source:
93
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm2
94
+ name: Open LLM Leaderboard
95
+ - task:
96
+ type: text-generation
97
+ name: Text Generation
98
+ dataset:
99
+ name: MuSR (0-shot)
100
+ type: TAUR-Lab/MuSR
101
+ args:
102
+ num_few_shot: 0
103
+ metrics:
104
+ - type: acc_norm
105
+ value: 24.53
106
+ name: acc_norm
107
+ source:
108
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm2
109
+ name: Open LLM Leaderboard
110
+ - task:
111
+ type: text-generation
112
+ name: Text Generation
113
+ dataset:
114
+ name: MMLU-PRO (5-shot)
115
+ type: TIGER-Lab/MMLU-Pro
116
+ config: main
117
+ split: test
118
+ args:
119
+ num_few_shot: 5
120
+ metrics:
121
+ - type: acc
122
+ value: 48.28
123
+ name: accuracy
124
+ source:
125
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm2
126
+ name: Open LLM Leaderboard
127
+ ---
128
+ ![dsfsd.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/XyiRvMFsyoI4fswTZ4YPz.png)
129
+
130
+ # **Sombrero-Opus-14B-Sm2**
131
+
132
+ > Sombrero-Opus-14B-Sm2 is based on the Qwen 2.5 14B modality architecture, designed to enhance coding efficiency and computational reasoning. This model is optimized for streamlined memory usage, avoiding unwanted textual token generation, and excelling in coding, explanatory reasoning, mathematical problem-solving, and technical tasks. It has been fine-tuned using specialized datasets to improve code generation, structured programming logic, and problem-solving capabilities.
133
+
134
+ ## **Key Improvements**
135
+ 1. **Optimized for Coding**: The model specializes in generating high-quality, structured code with minimal redundant tokens, ensuring efficient execution.
136
+ 2. **Enhanced Memory Utilization**: Implements streamlined memory optimization to reduce computational overhead and improve performance.
137
+ 3. **Superior Reasoning Capabilities**: Excels in solving complex mathematical and algorithmic problems with logical and structured explanations.
138
+ 4. **Long-Context Support**: Supports up to 128K tokens for input context and can generate up to 8K tokens in a single output, making it ideal for detailed coding responses.
139
+ 5. **Reduced Unwanted Textual Tokens**: Ensures a more focused output for coding tasks by minimizing excessive textual responses.
140
+
141
+ ## **Quickstart with transformers**
142
+
143
+ Here is a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and generate content:
144
+
145
+ ```python
146
+ from transformers import AutoModelForCausalLM, AutoTokenizer
147
+
148
+ model_name = "prithivMLmods/Sombrero-Opus-14B-Sm2"
149
+
150
+ model = AutoModelForCausalLM.from_pretrained(
151
+ model_name,
152
+ torch_dtype="auto",
153
+ device_map="auto"
154
+ )
155
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
156
+
157
+ prompt = "Write a Python function to find the Fibonacci sequence."
158
+ messages = [
159
+ {"role": "system", "content": "You are an advanced coding assistant."},
160
+ {"role": "user", "content": prompt}
161
+ ]
162
+ text = tokenizer.apply_chat_template(
163
+ messages,
164
+ tokenize=False,
165
+ add_generation_prompt=True
166
+ )
167
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
168
+
169
+ generated_ids = model.generate(
170
+ **model_inputs,
171
+ max_new_tokens=512
172
+ )
173
+ generated_ids = [
174
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
175
+ ]
176
+
177
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
178
+ print(response)
179
+ ```
180
+
181
+ ## **Intended Use**
182
+ 1. **Code Generation & Optimization**:
183
+ Designed for developers, assisting in writing, refactoring, and optimizing code across multiple programming languages.
184
+
185
+ 2. **Algorithm & Mathematical Problem Solving**:
186
+ Provides precise explanations and solutions for computational and mathematical problems.
187
+
188
+ 3. **Technical Explanations & Documentation**:
189
+ Generates clear and structured explanations for coding concepts, libraries, and APIs.
190
+
191
+ 4. **Debugging Assistance**:
192
+ Helps analyze code snippets, detect errors, and suggest corrections.
193
+
194
+ 5. **Educational Use**:
195
+ Assists students and learners by breaking down complex programming topics into easily understandable sections.
196
+
197
+ 6. **Structured Data Processing**:
198
+ Capable of analyzing and generating structured outputs, such as JSON, XML, and tables, making it ideal for data science applications.
199
+
200
+ ## **Limitations**
201
+ 1. **Hardware Requirements**:
202
+ Requires high-memory GPUs or TPUs due to its large parameter size and long-context support.
203
+
204
+ 2. **Potential Bias in Responses**:
205
+ While designed to be neutral, outputs may still reflect biases present in training data.
206
+
207
+ 3. **Inconsistent Outputs in Creative Tasks**:
208
+ May produce variable results in storytelling and non-technical topics.
209
+
210
+ 4. **Limited Real-World Awareness**:
211
+ Does not have access to real-time events beyond its training cutoff.
212
+
213
+ 5. **Error Propagation in Extended Outputs**:
214
+ Minor errors in early responses may affect overall coherence in long-form code outputs.
215
+
216
+ 6. **Prompt Sensitivity**:
217
+ The effectiveness of responses may depend on how well the input prompt is structured.
218
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
219
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/prithivMLmods__Sombrero-Opus-14B-Sm2-details)!
220
+ Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=prithivMLmods%2FSombrero-Opus-14B-Sm2&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!
221
+
222
+ | Metric |Value (%)|
223
+ |-------------------|--------:|
224
+ |**Average** | 38.98|
225
+ |IFEval (0-Shot) | 42.72|
226
+ |BBH (3-Shot) | 51.25|
227
+ |MATH Lvl 5 (4-Shot)| 48.64|
228
+ |GPQA (0-shot) | 18.46|
229
+ |MuSR (0-shot) | 24.53|
230
  |MMLU-PRO (5-shot) | 48.28|