prithivMLmods commited on
Commit
498bc94
1 Parent(s): 4a875b4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +95 -2
README.md CHANGED
@@ -19,7 +19,9 @@ tags:
19
  - safetensors
20
  - Question Answering
21
  ---
22
- ### **Llama-3.1-8B-Open-SFT**
 
 
23
 
24
  | **File Name** | **Size** | **Description** | **Upload Status** |
25
  |-------------------------------------|-------------------|---------------------------------------------------|-------------------|
@@ -36,4 +38,95 @@ tags:
36
  | `tokenizer.json` | 17.2 MB | Full tokenizer JSON file. | Uploaded (LFS) |
37
  | `tokenizer_config.json` | 57.4 kB | Configuration for the tokenizer. | Uploaded |
38
 
39
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  - safetensors
20
  - Question Answering
21
  ---
22
+ ### Llama-3.1-8B-Open-SFT
23
+
24
+ The **Llama-3.1-8B-Open-SFT** model is a fine-tuned version of **meta-llama/Llama-3.1-8B-Instruct**, designed for advanced text generation tasks, including conversational interactions, question answering, and chain-of-thought reasoning. This model leverages **Supervised Fine-Tuning (SFT)** using the **O1-OPEN/OpenO1-SFT** dataset to provide enhanced performance in context-sensitive and instruction-following tasks.
25
 
26
  | **File Name** | **Size** | **Description** | **Upload Status** |
27
  |-------------------------------------|-------------------|---------------------------------------------------|-------------------|
 
38
  | `tokenizer.json` | 17.2 MB | Full tokenizer JSON file. | Uploaded (LFS) |
39
  | `tokenizer_config.json` | 57.4 kB | Configuration for the tokenizer. | Uploaded |
40
 
41
+ ---
42
+
43
+ ### **Key Features**
44
+
45
+ 1. **Text Generation with CoT Reasoning:**
46
+ - Implements **Chain-of-Thought (CoT)** prompting for logical and step-by-step reasoning tasks.
47
+
48
+ 2. **Conversational AI:**
49
+ - Excels in generating context-aware and coherent responses in multi-turn conversations.
50
+
51
+ 3. **Supervised Fine-Tuning (SFT):**
52
+ - Optimized for open-domain tasks using the **O1-OPEN/OpenO1-SFT** dataset.
53
+
54
+ 4. **Multi-Purpose Functionality:**
55
+ - Supports a wide range of NLP tasks, including summarization, question answering, and text completion.
56
+
57
+ 5. **Scalable Sharded Architecture:**
58
+ - Model weights are distributed across four shards, ensuring efficient loading for large-scale applications.
59
+
60
+ ---
61
+
62
+ ### **Training Details**
63
+
64
+ - **Base Model:** [meta-llama/Llama-3.1-8B](#)
65
+ - **Finetuned Dataset:** [O1-OPEN/OpenO1-SFT](#)
66
+ - Dataset includes **77.7k** fine-tuning samples, curated for instruction-based and open-domain tasks.
67
+
68
+ - **Model Size:**
69
+ - 8 Billion parameters distributed over 4 shards for efficient deployment.
70
+
71
+ ### **Applications**
72
+
73
+ 1. **Chain-of-Thought (CoT) Reasoning:**
74
+ - Solve complex problems step-by-step with logical reasoning capabilities.
75
+
76
+ 2. **Conversational Agents:**
77
+ - Ideal for chatbots, virtual assistants, and conversational systems.
78
+
79
+ 3. **Question Answering:**
80
+ - Answer open-domain or context-specific questions accurately.
81
+
82
+ 4. **Text Completion:**
83
+ - Generate coherent continuations for incomplete inputs.
84
+
85
+ 5. **Creative Writing:**
86
+ - Support for generating stories, articles, or brainstorming ideas.
87
+
88
+ ---
89
+
90
+ ### **Usage**
91
+
92
+ #### **Loading the Model**
93
+ ```python
94
+ from transformers import AutoModelForCausalLM, AutoTokenizer
95
+
96
+ model_name = "prithivMLmods/Llama-3.1-8B-Open-SFT"
97
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
98
+ model = AutoModelForCausalLM.from_pretrained(model_name)
99
+ ```
100
+
101
+ ---
102
+
103
+ #### **Inference Example**
104
+ ```python
105
+ prompt = """
106
+ Explain the concept of gravity in a simple way suitable for a 10-year-old:
107
+ """
108
+ inputs = tokenizer(prompt, return_tensors="pt")
109
+ outputs = model.generate(**inputs, max_length=150, temperature=0.7)
110
+
111
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
112
+ print("Model Output:", response)
113
+ ```
114
+
115
+ ---
116
+
117
+ ### **Expected Output**
118
+ **"Gravity is a force that pulls things toward each other. It's the reason why things fall to the ground when you drop them. On Earth, gravity keeps us on the ground and makes sure everything stays in place, like your toys, the water in the ocean, and even the air we breathe."**
119
+
120
+ ---
121
+
122
+ ### **Performance Requirements**
123
+
124
+ - **Hardware:**
125
+ - High-performance GPUs are recommended for efficient inference.
126
+ - Minimum memory: ~16GB VRAM for full precision; 8GB for quantized models.
127
+
128
+ - **Optimization Options:**
129
+ - Use `Safetensors` for secure and efficient weight loading.
130
+ - Quantization or model parallelism for resource-constrained environments.
131
+
132
+ ---