File size: 10,460 Bytes
d465419 9eb9e72 d465419 9eb9e72 ed16d52 9eb9e72 ed16d52 9eb9e72 ed16d52 9eb9e72 ed16d52 9eb9e72 ed16d52 9eb9e72 ed16d52 9eb9e72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
---
license: apache-2.0
datasets:
- openclimatefix/era5
language:
- es
- en
metrics:
- mse
library_name: transformers
pipeline_tag: image-to-image
tags:
- climate
- transformers
- super-resolution
---
# Europe Reanalysis Super Resolution
The aim of the project is to create a Machine learning (ML) model that can generate high-resolution regional reanalysis data (similar to the one produced by CERRA) by downscaling global reanalysis data from ERA5.
This will be accomplished by using state-of-the-art Deep Learning (DL) techniques like U-Net, conditional GAN, and diffusion models (among others). Additionally, an ingestion module will be implemented to assess the possible benefit of using CERRA pseudo-observations as extra predictors. Once the model is designed and trained, a detailed validation framework takes the place.
It combines classical deterministic error metrics with in-depth validations, including time series, maps, spatio-temporal correlations, and computer vision metrics, disaggregated by months, seasons, and geographical regions, to evaluate the effectiveness of the model in reducing errors and representing physical processes. This level of granularity allows for a more comprehensive and accurate assessment, which is critical for ensuring that the model is effective in practice.
Moreover, tools for interpretability of DL models can be used to understand the inner workings and decision-making processes of these complex structures by analyzing the activations of different neurons and the importance of different features in the input data.
This work is funded by [Code for Earth 2023](https://codeforearth.ecmwf.int/) initiative.
# Table of Contents
- [Model Card for Europe Reanalysis Super Resolution](#model-card-for--model_id-)
- [Table of Contents](#table-of-contents)
- [Model Details](#model-details)
- [Model Description](#model-description)
- [Uses](#uses)
- [Direct Use](#direct-use)
- [Downstream Use [Optional]](#downstream-use-optional)
- [Out-of-Scope Use](#out-of-scope-use)
- [Bias, Risks, and Limitations](#bias-risks-and-limitations)
- [Recommendations](#recommendations)
- [Training Details](#training-details)
- [Training Data](#training-data)
- [Training Procedure](#training-procedure)
- [Preprocessing](#preprocessing)
- [Speeds, Sizes, Times](#speeds-sizes-times)
- [Evaluation](#evaluation)
- [Testing Data, Factors & Metrics](#testing-data-factors--metrics)
- [Testing Data](#testing-data)
- [Factors](#factors)
- [Metrics](#metrics)
- [Results](#results)
- [Model Examination](#model-examination)
- [Technical Specifications [optional]](#technical-specifications-optional)
- [Model Architecture and Objective](#model-architecture-and-objective)
- [Compute Infrastructure](#compute-infrastructure)
- [Hardware](#hardware)
- [Software](#software)
- [Authors](#authors)
# Model Details
## Model Description
<!-- Provide a longer summary of what this model is/does. -->
A vision model for down-scaling (from 0.25º to 0.05º) regional reanalysis grids in the mediterranean area.
- **Developed by:** A team of Predictia Intelligent Data Solutions S.L. & Instituto de Fisica de Cantabria (IFCA)
- **Model type:** Vision model
- **Language(s) (NLP):** en, es
- **License:** Apache-2.0
- **Resources for more information:** More information needed
- [GitHub Repo](https://github.com/ECMWFCode4Earth/DeepR)
# Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
## Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
<!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
## Downstream Use [Optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
<!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
## Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
<!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
# Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
## Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
# Training Details
## Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
The dataset used is a composition of the ERA5 and CERRA reanalysis.
The spatial coverage of the input grids (ERA5) is defined below, and corresponds to a 2D array of dimensions (60, 42):
```
longitude: [-8.35, 6.6]
latitude: [46.45, 35.50]
```
On the other hand, the target high-resolution grid (CERRA) correspond to a 2D matrix of dimmension (240, 160):
```
longitude: [-6.85, 5.1]
latitude: [44.95, 37]
```
The data samples used for training corresponds to the period from 1981 and 2013 (both included) and from 2014 to 2017 for per-epoch validation.
## Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
### Preprocessing
More information needed
### Speeds, Sizes, Times
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
More information needed
# Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
## Testing Data, Factors & Metrics
### Testing Data
<!-- This should link to a Data Card if possible. -->
The dataset used is a composition of the ERA5 and CERRA reanalysis.
The spatial coverage of the input grids (ERA5) and the target high-resolution grids (CERRA) is fixed for both training and testing.
The data samples used for testing corresponds to the period from 2018 to 2020 (both included).
### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
More information needed
### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
More information needed
## Results
More information needed
# Model Examination
More information needed
# Technical Specifications
## Model Architecture and Objective
The model architecture is based on the original Swin2 arcthitecture for Super Resolution (SR) tasks. The library [transformers](https://github.com/huggingface/transformers) is used to simplify the model design.
The main component of the model is a [transformers.Swin2SRModel](https://huggingface.co/docs/transformers/model_doc/swin2sr#transformers.Swin2SRModel) which increases x8 the spatial resolution of its inputs (Swin2SR only supports upscaling ratios power of 2).
As the real upscale ratio is ~5 and the output shape of the region considered is (160, 240), a Convolutional Neural Network (CNN) is included as a pre-process component which convert the inputs into a (40, 60) feature maps that can be fed to the Swin2SRModel.
This network is trained to learn the residuals of the bicubic interpolation.
The specific parameters of this networks are available in [config.json](https://huggingface.co/predictia/convswin2sr_mediterranean/blob/main/config.json).
## Compute Infrastructure
The use of GPUs in deep learning projects significantly accelerates model training and inference, leading to substantial reductions in computation time and making it feasible to tackle complex tasks and large datasets with efficiency.
The generosity and collaboration of our partners are instrumental to the success of this projects, significantly contributing to our research and development endeavors.
#### :pray: Our resource providers :pray:
- **AI4EOSC**: AI4EOSC stands for "Artificial Intelligence for the European Open Science Cloud." The European Open Science Cloud (EOSC) is a European Union initiative that aims to create a federated environment of research data and services. AI4EOSC is a specific project or initiative within the EOSC framework that focuses on the integration and application of artificial intelligence (AI) technologies in the context of open science.
- **European Weather Cloud**: The European Weather Cloud is the cloud-based collaboration platform for meteorological application development and operations in Europe. Services provided range from delivery of weather forecast data and products to the provision of computing and storage resources, support and expert advice.
### Hardware
For our project, we have deployed two virtual machines (VMs), each featuring a dedicated Graphics Processing Unit (GPU). One VM is equipped with a 16GB GPU, while the other boasts a more substantial 20GB GPU. This resource configuration allows us to efficiently manage a wide range of computing tasks, from data processing to deep learning, and ultimately drives the successful execution of our project.
### Software
The code used to train and evaluate this model is freely available through its GitHub Repository [ECMWFCode4Earth/DeepR](https://github.com/ECMWFCode4Earth/DeepR) hosted in the ECWMF Code 4 Earth organization.
### Authors
<!-- This section provides another layer of transparency and accountability. Whose views is this model card representing? How many voices were included in its construction? Etc. -->
- Mario Santa Cruz. Predictia Intelligent Data Solutions S.L.
- Antonio Pérez. Predictia Intelligent Data Solutions S.L.
- Javier Díez. Predictia Intelligent Data Solutions S.L. |