File size: 29,624 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Training loop for GIVT-style autoregressive and masked models."""
# pylint: disable=consider-using-from-import
import functools
import importlib
import multiprocessing.pool
import os
from absl import app
from absl import flags
from absl import logging
import big_vision.evaluators.common as eval_common
import big_vision.input_pipeline as input_pipeline
from big_vision.models.proj.givt import parallel_decode
import big_vision.models.proj.givt.decode as softar_decode
import big_vision.optax as bv_optax
import big_vision.sharding as bv_sharding
import big_vision.trainers.proj.givt.utils as trainer_utils
from big_vision.trainers.proj.uvim import panoptic_task
import big_vision.utils as u
from clu import parameter_overview
import flax
import jax
from jax.experimental import mesh_utils
from jax.experimental import multihost_utils
from jax.experimental.array_serialization import serialization as array_serial
import jax.numpy as jnp
from ml_collections import config_flags
import numpy as np
import optax
import tensorflow as tf
from tensorflow.io import gfile
# pylint: disable=logging-fstring-interpolation
config_flags.DEFINE_config_file(
"config", None, "Training configuration.", lock_config=True)
flags.DEFINE_string("workdir", default=None, help="Work unit directory.")
flags.DEFINE_boolean("cleanup", default=False,
help="Delete workdir (only) after successful completion.")
# Adds jax flags to the program.
jax.config.parse_flags_with_absl()
# Transfer guard will fail the program whenever that data between a host and
# a device is transferred implicitly. This often catches subtle bugs that
# cause slowdowns and memory fragmentation. Explicit transfers are done
# with jax.device_put and jax.device_get.
jax.config.update("jax_transfer_guard", "disallow")
# Fixes design flaw in jax.random that may cause unnecessary d2d comms.
jax.config.update("jax_threefry_partitionable", True)
NamedSharding = jax.sharding.NamedSharding
P = jax.sharding.PartitionSpec
def main(argv):
del argv
jax.distributed.initialize()
# Make sure TF does not touch GPUs.
tf.config.set_visible_devices([], "GPU")
config = flags.FLAGS.config
################################################################################
# #
# Set up logging #
# #
################################################################################
# Set up work directory and print welcome message.
workdir = flags.FLAGS.workdir
logging.info(
f"\u001b[33mHello from process {jax.process_index()} holding "
f"{jax.local_device_count()}/{jax.device_count()} devices and "
f"writing to workdir {workdir}.\u001b[0m")
save_ckpt_path = None
if workdir: # Always create if requested, even if we may not write into it.
gfile.makedirs(workdir)
save_ckpt_path = os.path.join(workdir, "checkpoint.bv")
# The pool is used to perform misc operations such as logging in async way.
pool = multiprocessing.pool.ThreadPool()
# Here we register preprocessing ops from modules listed on `pp_modules`.
for m in config.get("pp_modules", ["ops_general", "ops_image", "ops_text",
"proj.uvim.pp_ops", "proj.givt.pp_ops"]):
importlib.import_module(f"big_vision.pp.{m}")
# Setup up logging and experiment manager.
xid, wid = -1, -1
def info(s, *a):
logging.info("\u001b[33mNOTE\u001b[0m: " + s, *a)
def write_note(note):
if jax.process_index() == 0:
info("%s", note)
mw = u.BigVisionMetricWriter(xid, wid, workdir, config)
# Allow for things like timings as early as possible!
u.chrono.inform(measure=mw.measure, write_note=write_note)
################################################################################
# #
# Set up Mesh #
# #
################################################################################
# We rely on jax mesh_utils to organize devices, such that communication
# speed is the fastest for the last dimension, second fastest for the
# penultimate dimension, etc.
config_mesh = config.get("mesh", [("data", jax.device_count())])
# Sharding rules with default
sharding_rules = config.get("sharding_rules", [("act_batch", "data")])
mesh_axes, mesh_size = tuple(zip(*config_mesh))
# Because jax.utils do not support `-1` shape size.
mesh_size = np.array(jax.devices()).reshape(mesh_size).shape
device_mesh = mesh_utils.create_device_mesh(mesh_size)
# Consistent device order is important to ensure correctness of various train
# loop components, such as input pipeline, update step, evaluators. The
# order presribed by the `devices_flat` variable should be used throughout
# the program.
devices_flat = device_mesh.flatten()
################################################################################
# #
# Input Pipeline #
# #
################################################################################
write_note("Initializing train dataset...")
batch_size = config.input.batch_size
if batch_size % jax.device_count() != 0:
raise ValueError(f"Batch size ({batch_size}) must "
f"be divisible by device number ({jax.device_count()})")
info("Global batch size %d on %d hosts results in %d local batch size. With "
"%d dev per host (%d dev total), that's a %d per-device batch size.",
batch_size, jax.process_count(), batch_size // jax.process_count(),
jax.local_device_count(), jax.device_count(),
batch_size // jax.device_count())
train_ds, ntrain_img = input_pipeline.training(config.input)
total_steps = u.steps("total", config, ntrain_img, batch_size)
def get_steps(name, default=ValueError, cfg=config):
return u.steps(name, cfg, ntrain_img, batch_size, total_steps, default)
u.chrono.inform(total_steps=total_steps, global_bs=batch_size,
steps_per_epoch=ntrain_img / batch_size)
info("Running for %d steps, that means %f epochs",
total_steps, total_steps * batch_size / ntrain_img)
# Start input pipeline as early as possible.
n_prefetch = config.get("prefetch_to_device", 1)
train_iter = input_pipeline.start_global(train_ds, devices_flat, n_prefetch)
################################################################################
# #
# Create Model & Optimizer #
# #
################################################################################
write_note(f"Creating {config.vae.model_name} model...")
vae_mod = importlib.import_module(
f"big_vision.models.{config.vae.model_name}")
vae = vae_mod.Model(**config.vae.get("model", {}))
write_note(f"Creating {config.model_name} model...")
model_mod = importlib.import_module(f"big_vision.models.{config.model_name}")
model_config = config.get("model", {})
model = model_mod.Model(**model_config)
if config.get("adaptor_name"):
write_note(f"Creating {config.adaptor_name} model...")
adaptor_mod = importlib.import_module(
f"big_vision.models.{config.adaptor_name}")
adaptor = adaptor_mod.Model(num_channels=model_config.out_dim,
**config.adaptor.model)
else:
adaptor = None
def init(rng):
def _get_dummy_input(input_name, dtype=jnp.int64):
if input_name in train_ds.element_spec:
return jnp.zeros(train_ds.element_spec[input_name].shape, dtype=dtype)
return None
dummy_img = _get_dummy_input("image", dtype=jnp.float32)
dummy_labels = _get_dummy_input("labels")
dummy_cond_img = _get_dummy_input("cond_image", dtype=jnp.float32)
local_batch_size = dummy_img.shape[0] # pytype: disable=attribute-error
code_shape = (
local_batch_size, model_config.seq_len, model_config.out_dim)
dummy_code = jnp.zeros(code_shape, jnp.float32)
input_mask = model.get_input_mask_training(
jax.random.PRNGKey(0), (local_batch_size, model_config.seq_len)
)
params = model.init(rng, dummy_code, dummy_labels, image=dummy_cond_img,
input_mask=input_mask)["params"]
if adaptor is not None:
_, rng_adaptor = jax.random.split(rng)
adaptor_variables = adaptor.init(rng_adaptor, dummy_code)
params_adaptor = flax.core.unfreeze(adaptor_variables["params"])
params["params_adaptor"] = params_adaptor # store in same dict
return params
rng = jax.random.PRNGKey(u.put_cpu(config.get("seed", 0)))
write_note("Inferring parameter shapes...")
rng, rng_init = jax.random.split(rng)
params_shape = jax.eval_shape(init, rng_init)
write_note("Inferring optimizer state shapes...")
tx, sched_fns = bv_optax.make(config, params_shape, sched_kw=dict(
total_steps=total_steps, batch_size=batch_size, data_size=ntrain_img))
opt_shape = jax.eval_shape(tx.init, params_shape)
# We jit this, such that the arrays are created on the CPU, not device[0].
sched_fns_cpu = [u.jit_cpu()(sched_fn) for sched_fn in sched_fns]
# Training a stage 2 model requires a pretrained stage 1 model. We treat this
# as a constant and do not shard the parameters.
assert "model_init" in config.vae
params_vae = vae_mod.load(None, config.vae.model_init,
**config.vae.get("model_load", {}))
def vae_encode(images, rng=None, reparametrize=True):
mu, logvar = vae.apply({"params": params_vae}, images, method=vae.encode)
if reparametrize:
assert rng is not None and "dropout" in rng
return vae.apply({"params": params_vae}, mu, logvar,
method=vae.reparametrize, rngs=rng)
return mu
if jax.process_index() == 0:
num_params = sum(np.prod(p.shape) for p in jax.tree_leaves(params_shape))
mw.measure("num_params", num_params)
################################################################################
# #
# Shard & Transfer #
# #
################################################################################
write_note("Creating device mesh...")
mesh = jax.sharding.Mesh(device_mesh, mesh_axes)
repl_sharding = jax.sharding.NamedSharding(mesh, P())
write_note("Inferring shardings...")
train_state_shape = {"params": params_shape, "opt": opt_shape}
strategy = config.get("sharding_strategy", [(".*", "replicate")])
train_state_sharding = bv_sharding.infer_sharding(
train_state_shape, strategy=strategy, mesh=mesh)
write_note("Transferring train_state to devices...")
# RNG is always replicated
rng_init = u.reshard(rng_init, repl_sharding)
# Parameters and the optimizer are now global (distributed) jax arrays.
params = jax.jit(init, out_shardings=train_state_sharding["params"])(rng_init)
opt = jax.jit(tx.init, out_shardings=train_state_sharding["opt"])(params)
rng, rng_loop = jax.random.split(rng, 2)
rng_loop = u.reshard(rng_loop, repl_sharding)
del rng # not used anymore, so delete it.
# At this point we have everything we need to form a train state. It contains
# all the parameters that are passed and updated by the main training step.
train_state = {"params": params, "opt": opt}
del params, opt # Delete to avoid memory leak or accidental reuse.
write_note("Logging parameter overview...")
parameter_overview.log_parameter_overview(
train_state["params"], msg="Init params",
include_stats="global", jax_logging_process=0)
################################################################################
# #
# Update Step #
# #
################################################################################
# Define the loss function
def loss_fn(params, images, labels, cond_images, rng):
rng, rng_dropout = jax.random.split(rng, 2)
rng, rng_mask = jax.random.split(rng, 2)
_, rng_droplabels = jax.random.split(rng, 2)
rng_dropout = {"dropout": rng_dropout}
sequence = vae_encode(images, rng_dropout)
if adaptor is not None:
# Use the (invertible) adaptor to map to a new latent sequence
sequence = adaptor.apply({"params": params["params_adaptor"]},
sequence, method=adaptor.forward)
b, s, _ = sequence.shape
# This is None for the non-mask style. Otherwise, shape (b, s).
input_mask = model.get_input_mask_training(rng_mask, (b, s))
drop_labels = model.get_drop_labels(rng_droplabels, batch_size=b)
_, pdf = model.apply(
{"params": params}, sequence, labels,
image=cond_images,
train=True,
input_mask=input_mask,
drop_labels=drop_labels,
rngs=rng_dropout)
# Shape: (B, L, out_dim)
nll = -pdf.log_prob(sequence)
metrics = {"nll": nll}
if input_mask is not None:
metrics["fraction_masked_out"] = input_mask.astype(jnp.float32).mean(
axis=1
)
if nll.ndim == 3:
input_mask = input_mask[:, :, None]
# Note that `input_mask` is True where we mask out the input (ie replace
# with mask token), so we also only gather nlls at the corresponding
# points.
nll = jnp.where(input_mask, nll, 0.0)
# Take mean only of the spots we care about to smooth loss magnitute
# between examples, like in maskgit (ie this is
# sum(loss * input_mask) / sum(input_mask) in their code.
loss = nll.mean(where=input_mask)
else:
loss = nll.mean()
return loss, metrics
@functools.partial(
jax.jit,
donate_argnums=(0,),
out_shardings=(train_state_sharding, repl_sharding))
def update_fn(train_state, rng, batch):
"""Update step."""
images = batch["image"]
labels, cond_images = batch.get("labels"), batch.get("cond_image")
step_count = bv_optax.get_count(train_state["opt"], jittable=True)
rng = jax.random.fold_in(rng, step_count)
measurements = {}
# Get device-specific loss rng.
_, rng_model = jax.random.split(rng, 2)
params, opt = train_state["params"], train_state["opt"]
(loss, metrics), grads = jax.value_and_grad(loss_fn, has_aux=True)(
params, images, labels, cond_images, rng_model)
updates, opt = tx.update(grads, opt, params)
params = optax.apply_updates(params, updates)
train_state = {"params": params, "opt": opt}
measurements["training_loss"] = loss
gs = jax.tree_leaves(bv_optax.replace_frozen(config.schedule, grads, 0.))
measurements["l2_grads"] = jnp.sqrt(sum([jnp.vdot(g, g) for g in gs]))
ps = jax.tree_leaves(params)
measurements["l2_params"] = jnp.sqrt(sum([jnp.vdot(p, p) for p in ps]))
us = jax.tree_leaves(updates)
measurements["l2_updates"] = jnp.sqrt(sum([jnp.vdot(u, u) for u in us]))
if adaptor is not None:
ps_a = jax.tree_leaves(params["params_adaptor"])
measurements["l2_params_adaptor"] = jnp.sqrt(sum([jnp.vdot(p, p)
for p in ps_a]))
measurements.update({f"train/{k}": v.mean() for k, v in metrics.items()})
return train_state, measurements
################################################################################
# #
# Set up Evals #
# #
################################################################################
def validation_fn(train_state, batch, seed=0):
params = train_state["params"]
local_rng = trainer_utils.get_local_rng(seed, batch)
_, aux = loss_fn(
params, batch["image"], batch.get("labels"),
batch.get("cond_image"), local_rng)
return {
key: jnp.mean(value, axis=tuple(range(1, value.ndim)))
for key, value in aux.items()
}
def predict_fn_teacher_forcing(train_state, batch, seed=0):
params = train_state["params"]
image, labels = batch["image"], batch.get("labels")
local_rng = trainer_utils.get_local_rng(seed, batch)
rng_dropout = {"dropout": local_rng}
sequence = vae_encode(image, rng_dropout)
if adaptor is not None:
# Use the adaptor to map from VAE latent space to GIVT in/output space.
sequence = adaptor.apply({"params": params["params_adaptor"]},
sequence, method=adaptor.forward)
b, s, _ = sequence.shape
# This is None for the non-mask style. Otherwise, shape (b, s) of zeros
# (nothing masked).
input_mask = model.get_input_mask_teacher_forced((b, s))
_, pdf = model.apply(
{"params": params}, sequence, labels,
train=True, input_mask=input_mask, rngs=rng_dropout)
rng_sample, _ = jax.random.split(local_rng, 2)
sampled_sequence = pdf.sample(seed=rng_sample)
if adaptor is not None:
# Use the adaptor inverse to map back to the VAE latent space
sampled_sequence = adaptor.apply({"params": params["params_adaptor"]},
sampled_sequence, method=adaptor.inverse)
logits = vae.apply(
{"params": params_vae}, sampled_sequence, method=vae.decode)
return {"logits": logits}
def predict_fn_rep(train_state, image, seed=0):
assert model.style == "ar"
assert model.drop_labels_probability == 1.0
params = train_state["params"]
local_rng = trainer_utils.get_local_rng(seed, batch)
rng_dropout = {"dropout": local_rng}
sequence = vae_encode(image, rng_dropout)
placeholder_labels = jnp.zeros((sequence.shape[0],), dtype=jnp.int32)
return model.apply({"params": params}, sequence, labels=placeholder_labels,
return_reps=True, method=model.decode)
def predict_fn_sampling(train_state, batch, seed=0):
params = train_state["params"]
labels = batch.get("labels")
local_rng = trainer_utils.get_local_rng(seed, batch)
code_logprobs = None
if model.style == "ar":
if labels is None:
# Try to infer batch size if labels are not provided
if "image" in batch:
sampling_batch_size = batch["image"].shape[0]
elif "cond_image" in batch:
sampling_batch_size = batch["cond_image"].shape[0]
else:
sampling_batch_size = config.get("sampling_batch_size", 4)
else:
sampling_batch_size = None
sampled_codes, code_logprobs = softar_decode.generate(
params={"params": params},
seed=local_rng,
model=model,
seq_len=config.model.seq_len,
feature_dim=config.model.out_dim,
labels=labels,
cond_image=batch.get("cond_image"),
batch_size=sampling_batch_size,
config=config.get("ar_generation_config"),
)
elif model.style == "masked":
assert "cond_image" not in batch
sampled_codes = parallel_decode.decode_masked( # pytype: disable=wrong-arg-types
rng=local_rng,
labels=labels,
seq_len=config.model.seq_len,
feature_dim=config.model.out_dim,
model=model,
variables={"params": params},
config=parallel_decode.MaskedGenerationConfig(
**config.get("masked_generation_config", {})
),
).current_inputs_q
else:
raise NotImplementedError
if adaptor is not None:
# Use the adaptor inverse to map back to the VAE latent space.
sampled_codes = adaptor.apply({"params": params["params_adaptor"]},
sampled_codes, method=adaptor.inverse)
sampled_images = vae.apply(
{"params": params_vae}, sampled_codes, method=vae.decode)
sampling_results = {"logits": sampled_images}
if code_logprobs is not None:
sampling_results["logprobs"] = code_logprobs
return sampling_results
def predict_fn_sampling_panoptic(
train_state, batch, seed=0, min_fraction=0.0):
logits = predict_fn_sampling(train_state, batch, seed)["logits"]
return panoptic_task.panoptic_predictions_from_logits(
logits["semantics"], logits["instances"], min_fraction=min_fraction)
def predict_fn_sampling_depth(train_state, batch, seed=0):
depth = predict_fn_sampling(train_state, batch, seed)["logits"]["depth"]
depth = trainer_utils.unbin_depth(
depth, min_depth=config.min_depth, max_depth=config.max_depth,
num_bins=config.vae.model.inout_specs["depth"][1])
return {"depth": depth}
# Only initialize evaluators when they are first needed.
@functools.lru_cache(maxsize=None)
def evaluators():
return eval_common.from_config(
config,
{
"validation": validation_fn,
"sample_teacher_forced": predict_fn_teacher_forcing,
"sample": predict_fn_sampling,
"sample_panoptic": predict_fn_sampling_panoptic,
"sample_depth": predict_fn_sampling_depth,
"representation": predict_fn_rep,
},
lambda s: write_note(f"Init evaluator: {s}…\n{u.chrono.note}"),
lambda key, cfg: get_steps(key, default=None, cfg=cfg),
devices_flat,
)
# Decide how to initialize training. The order is important.
# 1. Always resumes from the existing checkpoint, e.g. resumes a finetune job.
# 2. Resume from a previous checkpoint, e.g. start a cooldown training job.
# 3. Initialize model from something, e,g, start a fine-tuning job.
# 4. Train from scratch.
resume_ckpt_path = None
if save_ckpt_path and gfile.exists(f"{save_ckpt_path}-LAST"):
resume_ckpt_path = save_ckpt_path
elif config.get("resume"):
resume_ckpt_path = fillin(config.resume)
ckpt_mngr = None
if save_ckpt_path or resume_ckpt_path:
ckpt_mngr = array_serial.GlobalAsyncCheckpointManager()
if resume_ckpt_path:
write_note(f"Resuming training from checkpoint {resume_ckpt_path}...")
jax.tree_map(lambda x: x.delete(), train_state)
del train_state
shardings = {
**train_state_sharding,
"chrono": jax.tree_map(lambda _: repl_sharding,
u.chrono.save()),
}
loaded = u.load_checkpoint_ts(
resume_ckpt_path, tree=shardings, shardings=shardings)
train_state = {key: loaded[key] for key in train_state_sharding.keys()}
u.chrono.load(jax.device_get(loaded["chrono"]))
del loaded
elif config.get("model_init"):
write_note(f"Initialize model from {config.model_init}...")
train_state["params"] = model_mod.load(
train_state["params"], config.model_init, config.get("model"),
**config.get("model_load", {}))
# load has the freedom to return params not correctly sharded
train_state["params"] = u.reshard(
train_state["params"], train_state_sharding["params"])
parameter_overview.log_parameter_overview(
train_state["params"], msg="restored params",
include_stats="global", jax_logging_process=0)
# At this point we need to know the current step to see whether to run evals.
write_note("Inferring the first step number...")
first_step_device = bv_optax.get_count(train_state["opt"], jittable=True)
first_step = int(jax.device_get(first_step_device))
u.chrono.inform(first_step=first_step)
# Note that training can be pre-empted during the final evaluation (i.e.
# just after the final checkpoint has been written to disc), in which case we
# want to run the evals.
if first_step in (total_steps, 0):
write_note("Running initial or final evals...")
mw.step_start(first_step)
for (name, evaluator, _, prefix) in evaluators():
if config.evals[name].get("skip_first") and first_step != total_steps:
continue
write_note(f"{name} evaluation...\n{u.chrono.note}")
with u.chrono.log_timing(f"z/secs/eval/{name}"):
with mesh, flax.linen.logical_axis_rules(sharding_rules):
for key, value in evaluator.run(train_state):
mw.measure(f"{prefix}{key}", value)
################################################################################
# #
# Train Loop #
# #
################################################################################
prof = None # Keeps track of start/stop of profiler state.
write_note("Starting training loop, compiling the first step...")
for step, batch in zip(range(first_step + 1, total_steps + 1), train_iter):
# Skip training loop when running an eval-only config
if config.get("eval_only", False):
break
mw.step_start(step)
with jax.profiler.StepTraceAnnotation("train_step", step_num=step):
with u.chrono.log_timing("z/secs/update0", noop=step > first_step + 1):
with mesh, flax.linen.logical_axis_rules(sharding_rules):
train_state, measurements = update_fn(train_state, rng_loop, batch)
# On the first host, let's always profile a handful of early steps.
if jax.process_index() == 0:
prof = u.startstop_prof(prof, step, first_step, get_steps("log_training"))
# Report training progress
if (u.itstime(step, get_steps("log_training"), total_steps, host=0)
or u.chrono.warmup and jax.process_index() == 0):
for i, sched_fn_cpu in enumerate(sched_fns_cpu):
mw.measure(f"global_schedule{i if i else ''}",
sched_fn_cpu(u.put_cpu(step - 1)))
measurements = jax.device_get(measurements)
for name, value in measurements.items():
mw.measure(name, value)
u.chrono.tick(step)
if not np.isfinite(measurements["training_loss"]):
raise RuntimeError(f"The loss became nan or inf somewhere within steps "
f"[{step - get_steps('log_training')}, {step}]")
# Checkpoint saving
keep_ckpt_steps = get_steps("keep_ckpt", None) or total_steps
if save_ckpt_path and (
(keep := u.itstime(step, keep_ckpt_steps, total_steps, first=False))
or u.itstime(step, get_steps("ckpt", None), total_steps, first=True)
):
u.chrono.pause(wait_for=train_state)
# Copy because we add extra stuff to the checkpoint.
ckpt = {**train_state}
# To save chrono state correctly and safely in a multihost setup, we
# broadcast the state to all hosts and convert it to a global array.
with jax.transfer_guard("allow"):
chrono_ckpt = multihost_utils.broadcast_one_to_all(u.chrono.save())
chrono_shardings = jax.tree_map(lambda _: repl_sharding, chrono_ckpt)
ckpt = ckpt | {"chrono": u.reshard(chrono_ckpt, chrono_shardings)}
u.save_checkpoint_ts(ckpt_mngr, ckpt, save_ckpt_path, step, keep)
u.chrono.resume()
for (name, evaluator, log_steps, prefix) in evaluators():
if u.itstime(step, log_steps, total_steps, first=False, last=True):
u.chrono.pause(wait_for=train_state)
u.chrono.tick(step) # Record things like epoch number, core hours etc.
write_note(f"{name} evaluation...\n{u.chrono.note}")
with u.chrono.log_timing(f"z/secs/eval/{name}"):
with mesh, flax.linen.logical_axis_rules(sharding_rules):
for key, value in evaluator.run(train_state):
mw.measure(f"{prefix}{key}", jax.device_get(value))
u.chrono.resume()
mw.step_end()
# Always give a chance to stop the profiler, no matter how things ended.
if jax.process_index() == 0 and prof is not None:
u.startstop_prof(prof)
# Last note needs to happen before the pool's closed =)
write_note(f"Done!\n{u.chrono.note}")
pool.close()
pool.join()
mw.close()
if ckpt_mngr:
ckpt_mngr.wait_until_finished()
# Make sure all hosts stay up until the end of main.
u.sync()
u.maybe_cleanup_workdir(workdir, flags.FLAGS.cleanup, info)
if __name__ == "__main__":
app.run(main)
|