File size: 12,517 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Text-centric preprocessing ops.

All preprocessing ops should return a data processing functors. A data
is represented as a dictionary of (TF) tensors. The functors output a modified
dictionary.

A commonly used key for the tokenized output is "labels".
"""
import functools
import importlib

from absl import logging
from big_vision.datasets.imagenet import class_names as imagenet_class_names
from big_vision.pp import ops_general
from big_vision.pp import tokenizer as bv_tok
from big_vision.pp import utils
from big_vision.pp.registry import Registry
import tensorflow as tf

from tensorflow.io import gfile

import sentencepiece
SPProcessor = sentencepiece.SentencePieceProcessor

import os
os.environ['PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION'] = 'python'
import sentencepiece.sentencepiece_model_pb2
del os.environ['PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION']
SPModelProto = sentencepiece.sentencepiece_model_pb2.ModelProto


# TODO: b/lbeyer - softly introduce and move to new tokenizer API.

KNOWN_TOKENIZERS = {
    "mc4":  # used in multilingual models (mT5, PaLI), vocab_size=250_000
        "gs://t5-data/vocabs/mc4.250000.100extra/sentencepiece.model",
    "cc_all":   # vocab_size=32_000
        "gs://t5-data/vocabs/cc_all.32000/sentencepiece.model",
    "c4_en":   # vocab_size=32_000
        "gs://t5-data/vocabs/cc_en.32000/sentencepiece.model",
    "t5":  # same as cc_all, but with 100 extra dummy tokens used by T5 models
        "gs://t5-data/vocabs/cc_all.32000.100extra/sentencepiece.model",
    "mt5":  # same as mc4, but with 100 extra dummy tokens used by T5 models
        "gs://t5-data/vocabs/mc4.250000.100extra/sentencepiece.model",
}


def create_tokenizer(model="c4_en", add_eos=True, add_bos=False):
  """Creates a tokenizer which can be used in tfds."""
  logging.info("Creating tokenizer: %s", model)
  with gfile.GFile(KNOWN_TOKENIZERS.get(model, model), "rb") as f:
    model = f.read()

  # Lazy import of tensorflow_text so it is an optional dependency for
  # the users of this file.
  import tensorflow_text
  return tensorflow_text.SentencepieceTokenizer(
      model=model, add_eos=add_eos, add_bos=add_bos
  )


def tokenize(input_text, tokenizer, max_len, *, pad_value, force_eos,
             multi_text=False):
  """Tokenizes string, and adds `pad_value` if longer than `max_len`."""

  def pad(tokens):
    # Truncate/pad to max_len.
    if force_eos:
      tokens = tf.cond(
          tf.shape(tokens)[0] >= max_len,
          lambda: tf.concat(
              # For too long, cut them off, but do keep the final EOS token.
              [tokens[:max_len - 1], tokens[-1:]], axis=0),
          lambda: tf.pad(
              tokens, [(0, max_len - tf.shape(tokens)[0])],
              constant_values=pad_value),
      )
    else:
      tokens = tokens[:max_len]
      tokens = tf.pad(
          tokens, [(0, max_len - tf.shape(tokens)[0])],
          constant_values=pad_value)
    tokens.set_shape([max_len])
    return tokens

  tokens = tokenizer.tokenize(input_text)

  if multi_text:
    tokens = tokens.to_tensor(pad_value)  # tf.RaggedTensor to tf.Tensor
    tokens = tf.reshape(tokens, [-1, tf.shape(tokens)[-1]])
    tokens = tf.map_fn(pad, tokens)  # `map_fn` only maps on axis 0

    final_shape = tf.concat([tf.shape(input_text), [max_len]], axis=0)
    return tf.reshape(tokens, final_shape)
  else:
    return pad(tokens)


@Registry.register("preprocess_ops.tokenize")
@utils.InKeyOutKey(indefault=None, outdefault="labels")
def get_pp_tokenize(
    max_len,
    eos,
    model="c4_en",
    lower=True,
    sample_if_multi=True,
    pad_value="<pad>",
    add_bos=False
):
  """Tokenizes a text.

  Let's assume max_len=3 and id("</s>")=1, id("a")=2, then we have

  1. `eos="none", pad_value=0`:
     - "a" -> [2, 0, 0]
     - "aa" -> [2, 2, 0]
     - "aaa" -> [2, 2, 2]

  2. `eos="yes", pad_value=0`:
     - "a" -> [2, 1, 0]
     - "aa" -> [2, 2, 1]
     - "aaa" -> [2, 2, 2]

     This is usually used with generative models that need to learn when to
     properly predict a "</s>" (when the sentence is finished) and when to
     abstain (when the sentence is truncated).

  3. `eos="sticky", pad_value=0`:
     - "a" -> [2, 1, 0]
     - "aa" -> [2, 2, 1]
     - "aaa" -> [2, 2, 1]

  4. `eos="sticky", pad_value=1`:
     - "a" -> [2, 1, 1]
     - "aa" -> [2, 2, 1]
     - "aaa" -> [2, 2, 1]

     This is traditionally used with contrastive models that use the last token
     for embeddings, similarly to "cls" tokens in BERT-style models.

  Args:
    max_len: maximum length of the tokenized text.
    eos: Whether to add an "</s>" (end of sentence) token and whether to keep it
      when the sequence is longer than `max_len - 1`. See examples above for
      details. Valid values: "none", "yes", "sticky".
    model: a path to the pretrained sentencepiece model.
    lower: lowercase the text before tokenizing.
    sample_if_multi: If there's more than one, randomly pick one if this is
      True; otherwise pick all texts and keep the input's batch shape in result.
    pad_value: which token to pad the sequence with. If a string (for example
      `"<pad>"`), tokenize it and use its first token. Note that there is no
      guarantee to have any padding at the end of the sentence, if the sentence
      is longer than `max_len`.
    add_bos: adds beginning of sentence symbol.

  Returns:
    an op that outputs tokenized text.
  """

  if eos not in ("yes", "none", "sticky"):
    raise ValueError(f"Invalid value for eos: '{eos}'.")

  tokenizer = create_tokenizer(model, add_eos=eos != "none", add_bos=add_bos)

  if isinstance(pad_value, str):
    pad_value = tokenizer.string_to_id(pad_value)

  def _pp_tokenize(txt):
    if sample_if_multi and tf.convert_to_tensor(txt).ndim:
      # TODO: I wish this code-path could die.
      logging.warning("sample_if_multi is deprecated and will be removed."
                      "Call `choice` (and maybe `setdefault`) instead.")
      txt = ops_general.get_choice(key="t")(
          ops_general.get_setdefault("t", "")({"t": txt}))["t"]

    if lower:
      txt = tf.strings.lower(txt) if sample_if_multi else tf.map_fn(
          tf.strings.lower, txt)

    return tokenize(
        txt,
        tokenizer,
        max_len,
        pad_value=pad_value,
        force_eos=eos == "sticky",
        multi_text=not sample_if_multi)

  return _pp_tokenize


@Registry.register("preprocess_ops.coco_captions")
def get_coco_captions(outkey="captions"):
  """Extracts coco's captions from nested dict."""

  def _pp_coco_captions(data):
    data[outkey] = data["captions"]["text"]
    return data

  return _pp_coco_captions


@Registry.register("preprocess_ops.clip_i1k_label_names")
@utils.InKeyOutKey(indefault="label", outdefault="labels")
def get_pp_clip_i1k_label_names():
  """Convert i1k label numbers to strings, using CLIP's class names."""

  def _pp_imagenet_labels(label):
    return tf.gather(imagenet_class_names.CLIP_IMAGENET_CLASS_NAMES, label)

  return _pp_imagenet_labels


@Registry.register("preprocess_ops.lower")
@utils.InKeyOutKey(indefault="text", outdefault="text")
def get_lower():
  """Lowercases text feature."""

  def _pp_lower(text):
    return tf.strings.lower(text)

  return _pp_lower


def _add_pieces(model_bytes, extra_pieces):
  """Adds extra pieces to sentencpiece model specified by `model_bytes`."""

  model = SPProcessor()
  model.LoadFromSerializedProto(model_bytes)
  unk_idx = model.PieceToId("<unk>")
  assert model.IdToPiece(unk_idx) == "<unk>", model.IdToPiece(unk_idx)

  model_proto = SPModelProto.FromString(model_bytes)
  idx_to_updated_piece = {}
  for piece in extra_pieces:
    # The SentencePieceModel proto stores whitespaces as the special
    # character '▁'. We perform the conversion here.
    piece = piece.replace(" ", "▁")
    spiece = model_proto.SentencePiece(
        piece=piece,
        # We set the highest score to force priority on user defined tokens.
        score=0.0,
        type=model_proto.SentencePiece().Type.USER_DEFINED,
    )
    existing_idx = model.PieceToId(piece)
    if (existing_idx != unk_idx) ^ (piece == "<unk>"):
      idx_to_updated_piece[existing_idx] = spiece
      logging.info("Updating token at idx %d: %s", existing_idx, spiece.piece)
    else:
      model_proto.pieces.append(spiece)

  # Replace duplicated pieces with updated ones.
  updated_pieces = [
      idx_to_updated_piece.get(i, piece)
      for i, piece in enumerate(model_proto.pieces)
  ]
  del model_proto.pieces[:]
  model_proto.pieces.extend(updated_pieces)

  return model_proto.SerializeToString()


def _iterable(x):
  if isinstance(x, tf.RaggedTensor):
    return True
  if getattr(x, "ndim", 0) > 1:  # np, jnp
    return True
  if isinstance(x, (list, tuple)) and not isinstance(x[0], (int, float)):
    return True
  return False


@Registry.register("tokenizers.sp")
class SentencepieceTokenizer(bv_tok.Tokenizer):
  """Wraps a `tftext.SentencepieceTokenizer`.

  If you plan to use this tokenizer, please familiarize yourself with the test
  cases first. This is likely to save you a lot of troubles down the road, trust
  me!
  """

  def __init__(self, model, tokensets=()):
    with gfile.GFile(KNOWN_TOKENIZERS.get(model, model), "rb") as f:
      model_bytes = f.read()
    extras = bv_tok.get_extra_tokens(tokensets)
    model_bytes = _add_pieces(model_bytes, extras)
    self._tok_sp = SPProcessor()
    self._tok_sp.LoadFromSerializedProto(model_bytes)
    self.extras = {self._tok_sp.PieceToId(x): x for x in extras}

  def to_int(self, text, *, bos=False, eos=False):
    def _single(s):
      return (
          ([self.bos_token] if bos else []) +
          self._tok_sp.EncodeAsIds(s) +
          ([self.eos_token] if eos else [])
      )
    if isinstance(text, str):
      return _single(text)
    return type(text)([_single(s) for s in text])

  def to_str(self, tokens, *, stop_at_eos=True):
    def _single(toks):
      toks = [int(t) for t in toks]  # We really need this for DecodeIds.
      if stop_at_eos:
        try:  # The SentencePiece strips eos, but does not stop at it, so we do.
          toks = toks[:toks.index(self.eos_token)]
        except ValueError:  # No eos token found, nothing to do.
          pass
      return self._tok_sp.DecodeIds(toks)
    if _iterable(tokens):
      return [_single(toks) for toks in tokens]
    return _single(tokens)

  def _check_known(self, piece):
    if (id_ := self._tok_sp.PieceToId(piece)) == self._tok_sp.unk_id():
      logging.error("Piece '%s' is not known (unk=%s)!", piece, id_)
    return id_

  def to_piece(self, idx):
    return self._tok_sp.IdToPiece(int(idx))

  @property
  def pad_token(self):
    return self._tok_sp.pad_id()

  @property
  def eos_token(self):
    return self._tok_sp.eos_id()

  @property
  def bos_token(self):
    return self._tok_sp.bos_id()

  @property
  def vocab_size(self):
    return self._tok_sp.GetPieceSize()

  # For the _tf_op variants, we need a lot of wrapping boilerplate.

  def to_int_tf_op(self, text, *, bos=False, eos=False):
    text = tf.convert_to_tensor(text)
    if text.ndim == 0:
      def fn(txt):
        string = txt.numpy().decode()
        return tf.constant(self.to_int(string, bos=bos, eos=eos), tf.int32)
      return tf.py_function(fn, [text], tf.int32)
    else:
      def fn(txt):
        strings = [s.decode() for s in txt.numpy().tolist()]
        toks = self.to_int(strings, bos=bos, eos=eos)
        return tf.ragged.constant(toks)
      out_type = tf.RaggedTensorSpec([tf.shape(text)[0], None], tf.int32)
      return tf.py_function(fn, [text], Tout=out_type)

  def to_str_tf_op(self, tokens, *, stop_at_eos=True):
    def single(t):
      fn = functools.partial(self.to_str, stop_at_eos=stop_at_eos)
      return tf.numpy_function(fn, [t], tf.string, stateful=False)
    if _iterable(tokens):
      return tf.map_fn(single, tokens, tf.string)
    return single(tokens)