File size: 14,921 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
# Copyright 2023 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Model definitions for CapPa (https://arxiv.org/abs/2306.07915).
Used abbreviations for dimension annotations:
B: batch size.
H: image height.
W: image width.
P: number of patches (PH/PW: number of patches in height/width dimensions).
E: embedding size.
L: sequence length of text tokens.
V: vocab size.
"""
from collections.abc import Sequence
from big_vision import utils
from big_vision.models import common
from big_vision.models import vit
import flax
import flax.linen as nn
from flax.linen import partitioning
import jax
import jax.numpy as jnp
def shift_right(x, axis=1, constant_values=0):
"""Shift to the right on given axis with padding value 0."""
pad_widths = [(0, 0)] * len(x.shape)
pad_widths[axis] = (1, 0)
padded = jnp.pad(x, pad_widths, constant_values=constant_values)
# Cuts off the rightmost slice of size along the `axis` dimension.
# Note that `list[:-1]`` is the same as `list[slice(-1)]`.
return padded[tuple(slice(-1 if i == axis else None) for i in range(x.ndim))]
class MlpBlock(nn.Module):
"""Transformer MLP / feed-forward block with option to deactivate bias."""
mlp_dim: int | None = None # Defaults to 4x input dim
dropout: float = 0.0
use_bias: bool = True
@nn.compact
def __call__(self, x, deterministic=True):
"""Applies Transformer MlpBlock module."""
inits = dict(
kernel_init=nn.initializers.xavier_uniform(),
bias_init=nn.initializers.normal(stddev=1e-6),
)
n, l, d = x.shape # pylint: disable=unused-variable
x = nn.Dense(self.mlp_dim or 4 * d, use_bias=self.use_bias, **inits)(x)
x = nn.gelu(x)
x = nn.Dropout(rate=self.dropout)(x, deterministic)
x = nn.Dense(d, use_bias=self.use_bias, **inits)(x)
return x
class EncoderDecoderBlock(nn.Module):
"""Transformer encoder-decoder layer."""
mlp_dim: int
num_heads: int
dropout_rate: float = 0.
decode: bool = False
use_bias: bool = True
@nn.compact
def __call__(self, targets, encoded, decoder_mask=None, deterministic=True):
"""Applies EncoderDecoder1DBlock module.
Args:
targets: target text embeddings [B, L, E].
encoded: encoded image patches from encoder [B, P, E].
decoder_mask: decoder self-attention mask.
deterministic: bool, deterministic or not (to apply dropout).
Returns:
output after transformer encoder-decoder block [B, L, E].
"""
def wlc(f):
dim_names = ("act_batch", "act_len", "act_emb")
return nn.with_logical_constraint(f, dim_names)
# Decoder block.
x = wlc(nn.LayerNorm(name="LayerNorm1", use_bias=self.use_bias)(targets))
x = wlc(nn.SelfAttention(
num_heads=self.num_heads, use_bias=False, broadcast_dropout=False,
dropout_rate=self.dropout_rate, decode=self.decode, name="SelfAttn")(
x, decoder_mask, deterministic=deterministic))
x = wlc(nn.Dropout(rate=self.dropout_rate)(x, deterministic=deterministic))
x = wlc(x + targets)
if encoded is not None:
# Encoder-Decoder block.
y = wlc(nn.LayerNorm(name="LayerNorm2", use_bias=self.use_bias)(x))
y = wlc(nn.MultiHeadDotProductAttention(
num_heads=self.num_heads, use_bias=False, broadcast_dropout=False,
dropout_rate=self.dropout_rate, name="CrossAttn")(
y, encoded, deterministic=deterministic))
y = wlc(
nn.Dropout(rate=self.dropout_rate)(y, deterministic=deterministic))
y = wlc(y + x)
else:
y = x
# MLP block.
z = wlc(nn.LayerNorm(name="LayerNorm3", use_bias=self.use_bias)(y))
z = wlc(MlpBlock(
mlp_dim=self.mlp_dim, dropout=self.dropout_rate, use_bias=self.use_bias,
name="MLP")(z, deterministic=deterministic))
return wlc(y + z), None
class Decoder(nn.Module):
"""Transformer decoder with parallel prediction."""
emb_dim: int
mlp_dim: int
num_heads: int
num_layers: int
dropout_rate: float = 0.
output_vocab_size: int = 32_000
# Masked prediction training mode
masked_pred_prob: float = 0.
masking_ratio: float = 0.
# Whether to use bias in MLP blocks and LN
use_bias: bool = True
scan: bool = False
remat_policy: str = "nothing_saveable"
@nn.compact
def __call__(self,
encoded,
targets,
pos_emb,
decoder_mask=None,
decode=False,
deterministic=True,
max_decode_length=None):
"""Applies Transformer model on the inputs.
Args:
encoded: encoded image patches from encoder [B, P, E].
targets: target text tokens [B, L].
pos_emb: positional embeddings.
decoder_mask: decoder self-attention mask.
decode: bool, whether to perform fast autoregressive decoding with cache.
deterministic: bool, deterministic or not (to apply dropout).
max_decode_length: optional max length for positional embeddings.
Returns:
output of a transformer decoder [B, L, V].
"""
y = targets.astype("int32")
if not decode:
if self.masked_pred_prob > 0.0 and not deterministic:
# Binary random variable indicating whether to do masked prediction
def _add_random_masks(a):
# Generate random mask
n_masked = int(self.masking_ratio * a.shape[1])
mask_locations = jnp.zeros(a.shape[:2], dtype=jnp.int32)
mask_locations = mask_locations.at[:, :n_masked].set(1)
mask_locations = jax.random.permutation(
self.make_rng("dropout"), mask_locations, axis=1, independent=True
)
# Replace mask locations with mask token index (=vocab_size)
a_masked = jnp.where(mask_locations, self.output_vocab_size, a)
return a_masked
def where(mask, x, y):
mask = mask.reshape((-1,) + (1,) * (x.ndim - 1))
return jnp.where(mask, x, y)
do_masked_pred = (
jax.random.uniform(self.make_rng("dropout"), (len(y),))
< self.masked_pred_prob
)
y = where(do_masked_pred, _add_random_masks(y), shift_right(y))
decoder_mask = where(
do_masked_pred, jnp.ones_like(decoder_mask), decoder_mask
)
else:
y = shift_right(y)
embed = nn.Embed(
self.output_vocab_size + (1 if self.masked_pred_prob > 0.0 else 0),
self.emb_dim,
name="EmbedTargets",
embedding_init=nn.initializers.normal(stddev=1.0),
)
y = embed(y)
y = common.AddPositionEmbs(
decode=decode, name="PosEmbedTargets")(y, pos_emb)
# NOTE: One could apply dropout on the decoder's inputs here. Whether to do
# it or not, and if so, what is the best/common way, is to be determined.
# y = nn.Dropout(rate=self.dropout_rate)(y, deterministic=deterministic)
if self.scan:
# Mostly followed
# https://github.com/google/maxtext/blob/4d99e30b3e0e0cb1d1aa11c7db7fffe18e301498/MaxText/layers.py#L1126
# for the scanned version.
# 1. remat
enc_dec_block_remat = nn.remat(
EncoderDecoderBlock,
prevent_cse=False,
static_argnums=(-1,),
policy=getattr(jax.checkpoint_policies, self.remat_policy, None))
# 2. scan
initializing = self.is_mutable_collection("params")
param_scan_axis = 1
params_spec = (param_scan_axis if initializing
else partitioning.ScanIn(param_scan_axis))
dec_scanned = nn.scan(enc_dec_block_remat,
variable_axes={
"params": params_spec,
"cache": 0,
},
split_rngs={"params": True, "dropout": True},
in_axes=nn.broadcast,
length=self.num_layers)
# 3. fprop
y, _ = dec_scanned(num_heads=self.num_heads, mlp_dim=self.mlp_dim,
dropout_rate=self.dropout_rate, decode=decode,
use_bias=self.use_bias, name="EncDecBlock")(
y, encoded, decoder_mask, deterministic)
else:
for lyr in range(self.num_layers):
y, _ = EncoderDecoderBlock(
num_heads=self.num_heads, mlp_dim=self.mlp_dim,
dropout_rate=self.dropout_rate, decode=decode,
use_bias=self.use_bias, name=f"EncDecBlock{lyr}")(
y, encoded, decoder_mask=decoder_mask,
deterministic=deterministic)
y = nn.LayerNorm(name="LayerNorm")(y)
logits = nn.Dense(
self.output_vocab_size,
kernel_init=nn.initializers.zeros,
name="LogitsDense",
)(y)
return logits
class Model(nn.Module):
"""Transformer Model for sequence to sequence translation."""
# Encoder/decoder:
num_heads: int = 8
num_layers: int = 6
mlp_dim: int = 2048
emb_dim: int = 512
enc_dropout_rate: float = 0.
vocab_size: int = 32_000
seq_len: int = 256
# Encoder:
patches: Sequence[int] = (16, 16)
input_seq_len: int = 768
posemb_type: str = "learn"
patch_dropout: float = 0.
# Decoder:
decoder_num_heads: int = 0
decoder_num_layers: int = 0
decoder_mlp_dim: int = 0
decoder_emb_dim: int = 0
dec_dropout_rate: float = 0.
# Probability of masked prediction rather than autoregressive prediciton.
masked_pred_prob: float = 0.
# Masking ratio for masked prediction.
masking_ratio: float = 0.
# Whether to use bias in decoder MLP blocks and LN.
decoder_bias: bool = True
scan: bool = False
remat_policy: str = "nothing_saveable"
def setup(self):
self.encoder = vit.Model(
patch_size=self.patches,
width=self.emb_dim,
depth=self.num_layers,
mlp_dim=self.mlp_dim,
num_heads=self.num_heads,
dropout=self.enc_dropout_rate,
posemb=self.posemb_type,
scan=self.scan,
remat_policy=self.remat_policy,
)
self.pos_emb_for_decoder = vit.get_posemb(
self,
self.posemb_type,
(1, self.seq_len),
self.decoder_emb_dim or self.emb_dim,
"pos_embedding_decoder",
)
self.decoder = Decoder(
num_layers=self.decoder_num_layers or self.num_layers,
mlp_dim=self.decoder_mlp_dim or self.mlp_dim,
num_heads=self.decoder_num_heads or self.num_heads,
dropout_rate=self.dec_dropout_rate,
emb_dim=self.decoder_emb_dim or self.emb_dim,
output_vocab_size=self.vocab_size,
masked_pred_prob=self.masked_pred_prob,
masking_ratio=self.masking_ratio,
use_bias=self.decoder_bias,
scan=self.scan,
remat_policy=self.remat_policy,
)
def encode(self, image, train=False, return_enc_features=False):
"""Encodes input image or embeddings."""
_, out = self.encoder(image, train=train)
encoded = out["encoded"]
# Return intermediate features if required
if return_enc_features:
return encoded, out
return encoded
def decode(self, encoded, targets, decode=False, train=False,
max_decode_length=None):
"""Applies Transformer decoder-branch on encoded-input and target.
Args:
encoded: encoded image patches from encoder [B, P, E].
targets: target text tokens [B, L].
decode: whether to prepare and use an autoregressive cache.
train: whether it is training.
max_decode_length: optional max length for positional embeddings.
Returns:
logits array from transformer decoder [B, L, V].
"""
decoder_mask = None if decode else nn.make_causal_mask(targets)
logits = self.decoder(
encoded,
targets,
pos_emb=self.pos_emb_for_decoder,
decoder_mask=decoder_mask,
decode=decode,
deterministic=not train,
max_decode_length=max_decode_length)
return logits
def __call__(self, image, text, *, decode=False,
train=False, return_enc_features=False):
"""Applies Transformer model on the inputs.
Args:
image: batch of images [B, H, W, 3].
text: batch of tokenized texts [B, L].
decode: whether to prepare and use an autoregressive cache.
train: whether it is training.
return_enc_features: whether to return the encoder features.
Returns:
logits array from full transformer [B, L, V].
"""
if return_enc_features:
encoded, out = self.encode(image, train=train, return_enc_features=True)
return encoded, out
encoded = self.encode(image, train=train)
decoded = self.decode(encoded, text, decode=decode, train=train)
return decoded
def load(init_params, init_files, model_params=None,
dont_load=("head/kernel", "head/bias", "cls")):
"""Loads params from init checkpoint and merges into init_params."""
if isinstance(init_files, str):
# A shortcut for a single file checkpoint of a vtt model.
ckpt_params = utils.load_params(init_files)
ckpt_params = flax.training.checkpoints.convert_pre_linen(ckpt_params)
ckpt_params = common.merge_params(ckpt_params, init_params, dont_load)
# Detect attempts to load non-scan checkpoint into scan model if possible.
if (model_params.get("scan") and
"encoderblock" not in ckpt_params["encoder"]["Transformer"]):
raise NotImplementedError("Loading a non-scan checkpoint into a "
"scan model is not supported yet!")
if (not model_params.get("scan")
and "encoderblock" in ckpt_params["encoder"]["Transformer"]):
assert "decoder.*" in dont_load or "decoder/.*" in dont_load, (
"Converting scan decoder to a non-scan one is not supported yet!")
ckpt_params["encoder"] = utils.jit_cpu()(
vit.scan_to_pyloop)(ckpt_params["encoder"])
else:
assert set(init_files) == {"encoder"}, "Only encoder init supported"
enc_init = init_files["encoder"]
ckpt_params = flax.core.freeze(init_params).unfreeze()
vit_params = ckpt_params["encoder"]
encoder_params = vit.load(
vit_params, enc_init, model_cfg={},
dont_load=dont_load)
ckpt_params["encoder"] = encoder_params
ckpt_params["encoder"]["pos_embedding"] = vit.resample_posemb(
old=ckpt_params["encoder"]["pos_embedding"],
new=init_params["encoder"]["pos_embedding"])
return ckpt_params
|