File size: 14,921 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
# Copyright 2023 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Model definitions for CapPa (https://arxiv.org/abs/2306.07915).

Used abbreviations for dimension annotations:
  B: batch size.
  H: image height.
  W: image width.
  P: number of patches (PH/PW: number of patches in height/width dimensions).
  E: embedding size.
  L: sequence length of text tokens.
  V: vocab size.
"""

from collections.abc import Sequence

from big_vision import utils
from big_vision.models import common
from big_vision.models import vit
import flax
import flax.linen as nn
from flax.linen import partitioning
import jax
import jax.numpy as jnp


def shift_right(x, axis=1, constant_values=0):
  """Shift to the right on given axis with padding value 0."""
  pad_widths = [(0, 0)] * len(x.shape)
  pad_widths[axis] = (1, 0)
  padded = jnp.pad(x, pad_widths, constant_values=constant_values)
  # Cuts off the rightmost slice of size along the `axis` dimension.
  # Note that `list[:-1]`` is the same as `list[slice(-1)]`.
  return padded[tuple(slice(-1 if i == axis else None) for i in range(x.ndim))]


class MlpBlock(nn.Module):
  """Transformer MLP / feed-forward block with option to deactivate bias."""
  mlp_dim: int | None = None  # Defaults to 4x input dim
  dropout: float = 0.0
  use_bias: bool = True

  @nn.compact
  def __call__(self, x, deterministic=True):
    """Applies Transformer MlpBlock module."""
    inits = dict(
        kernel_init=nn.initializers.xavier_uniform(),
        bias_init=nn.initializers.normal(stddev=1e-6),
    )

    n, l, d = x.shape  # pylint: disable=unused-variable
    x = nn.Dense(self.mlp_dim or 4 * d, use_bias=self.use_bias, **inits)(x)
    x = nn.gelu(x)
    x = nn.Dropout(rate=self.dropout)(x, deterministic)
    x = nn.Dense(d, use_bias=self.use_bias, **inits)(x)
    return x


class EncoderDecoderBlock(nn.Module):
  """Transformer encoder-decoder layer."""
  mlp_dim: int
  num_heads: int
  dropout_rate: float = 0.
  decode: bool = False
  use_bias: bool = True

  @nn.compact
  def __call__(self, targets, encoded, decoder_mask=None, deterministic=True):
    """Applies EncoderDecoder1DBlock module.

    Args:
      targets: target text embeddings [B, L, E].
      encoded: encoded image patches from encoder [B, P, E].
      decoder_mask: decoder self-attention mask.
      deterministic: bool, deterministic or not (to apply dropout).

    Returns:
      output after transformer encoder-decoder block [B, L, E].
    """
    def wlc(f):
      dim_names = ("act_batch", "act_len", "act_emb")
      return nn.with_logical_constraint(f, dim_names)

    # Decoder block.
    x = wlc(nn.LayerNorm(name="LayerNorm1", use_bias=self.use_bias)(targets))
    x = wlc(nn.SelfAttention(
        num_heads=self.num_heads, use_bias=False, broadcast_dropout=False,
        dropout_rate=self.dropout_rate, decode=self.decode, name="SelfAttn")(
            x, decoder_mask, deterministic=deterministic))
    x = wlc(nn.Dropout(rate=self.dropout_rate)(x, deterministic=deterministic))
    x = wlc(x + targets)

    if encoded is not None:
      # Encoder-Decoder block.
      y = wlc(nn.LayerNorm(name="LayerNorm2", use_bias=self.use_bias)(x))
      y = wlc(nn.MultiHeadDotProductAttention(
          num_heads=self.num_heads, use_bias=False, broadcast_dropout=False,
          dropout_rate=self.dropout_rate, name="CrossAttn")(
              y, encoded, deterministic=deterministic))
      y = wlc(
          nn.Dropout(rate=self.dropout_rate)(y, deterministic=deterministic))
      y = wlc(y + x)
    else:
      y = x

    # MLP block.
    z = wlc(nn.LayerNorm(name="LayerNorm3", use_bias=self.use_bias)(y))
    z = wlc(MlpBlock(
        mlp_dim=self.mlp_dim, dropout=self.dropout_rate, use_bias=self.use_bias,
        name="MLP")(z, deterministic=deterministic))

    return wlc(y + z), None


class Decoder(nn.Module):
  """Transformer decoder with parallel prediction."""
  emb_dim: int
  mlp_dim: int
  num_heads: int
  num_layers: int
  dropout_rate: float = 0.
  output_vocab_size: int = 32_000

  # Masked prediction training mode
  masked_pred_prob: float = 0.
  masking_ratio: float = 0.

  # Whether to use bias in MLP blocks and LN
  use_bias: bool = True

  scan: bool = False
  remat_policy: str = "nothing_saveable"

  @nn.compact
  def __call__(self,
               encoded,
               targets,
               pos_emb,
               decoder_mask=None,
               decode=False,
               deterministic=True,
               max_decode_length=None):
    """Applies Transformer model on the inputs.

    Args:
      encoded: encoded image patches from encoder [B, P, E].
      targets: target text tokens [B, L].
      pos_emb: positional embeddings.
      decoder_mask: decoder self-attention mask.
      decode: bool, whether to perform fast autoregressive decoding with cache.
      deterministic: bool, deterministic or not (to apply dropout).
      max_decode_length: optional max length for positional embeddings.

    Returns:
      output of a transformer decoder [B, L, V].
    """
    y = targets.astype("int32")
    if not decode:
      if self.masked_pred_prob > 0.0 and not deterministic:
        # Binary random variable indicating whether to do masked prediction

        def _add_random_masks(a):
          # Generate random mask
          n_masked = int(self.masking_ratio * a.shape[1])
          mask_locations = jnp.zeros(a.shape[:2], dtype=jnp.int32)
          mask_locations = mask_locations.at[:, :n_masked].set(1)
          mask_locations = jax.random.permutation(
              self.make_rng("dropout"), mask_locations, axis=1, independent=True
          )
          # Replace mask locations with mask token index (=vocab_size)
          a_masked = jnp.where(mask_locations, self.output_vocab_size, a)
          return a_masked

        def where(mask, x, y):
          mask = mask.reshape((-1,) + (1,) * (x.ndim - 1))
          return jnp.where(mask, x, y)

        do_masked_pred = (
            jax.random.uniform(self.make_rng("dropout"), (len(y),))
            < self.masked_pred_prob
        )
        y = where(do_masked_pred, _add_random_masks(y), shift_right(y))
        decoder_mask = where(
            do_masked_pred, jnp.ones_like(decoder_mask), decoder_mask
        )

      else:
        y = shift_right(y)

    embed = nn.Embed(
        self.output_vocab_size + (1 if self.masked_pred_prob > 0.0 else 0),
        self.emb_dim,
        name="EmbedTargets",
        embedding_init=nn.initializers.normal(stddev=1.0),
    )
    y = embed(y)

    y = common.AddPositionEmbs(
        decode=decode, name="PosEmbedTargets")(y, pos_emb)
    # NOTE: One could apply dropout on the decoder's inputs here. Whether to do
    # it or not, and if so, what is the best/common way, is to be determined.
    # y = nn.Dropout(rate=self.dropout_rate)(y, deterministic=deterministic)

    if self.scan:
      # Mostly followed
      # https://github.com/google/maxtext/blob/4d99e30b3e0e0cb1d1aa11c7db7fffe18e301498/MaxText/layers.py#L1126
      # for the scanned version.
      # 1. remat
      enc_dec_block_remat = nn.remat(
          EncoderDecoderBlock,
          prevent_cse=False,
          static_argnums=(-1,),
          policy=getattr(jax.checkpoint_policies, self.remat_policy, None))
      # 2. scan
      initializing = self.is_mutable_collection("params")
      param_scan_axis = 1
      params_spec = (param_scan_axis if initializing
                     else partitioning.ScanIn(param_scan_axis))
      dec_scanned = nn.scan(enc_dec_block_remat,
                            variable_axes={
                                "params": params_spec,
                                "cache": 0,
                            },
                            split_rngs={"params": True, "dropout": True},
                            in_axes=nn.broadcast,
                            length=self.num_layers)
      # 3. fprop
      y, _ = dec_scanned(num_heads=self.num_heads, mlp_dim=self.mlp_dim,
                         dropout_rate=self.dropout_rate, decode=decode,
                         use_bias=self.use_bias, name="EncDecBlock")(
                             y, encoded, decoder_mask, deterministic)
    else:
      for lyr in range(self.num_layers):
        y, _ = EncoderDecoderBlock(
            num_heads=self.num_heads, mlp_dim=self.mlp_dim,
            dropout_rate=self.dropout_rate, decode=decode,
            use_bias=self.use_bias, name=f"EncDecBlock{lyr}")(
                y, encoded, decoder_mask=decoder_mask,
                deterministic=deterministic)

    y = nn.LayerNorm(name="LayerNorm")(y)

    logits = nn.Dense(
        self.output_vocab_size,
        kernel_init=nn.initializers.zeros,
        name="LogitsDense",
    )(y)
    return logits


class Model(nn.Module):
  """Transformer Model for sequence to sequence translation."""
  # Encoder/decoder:
  num_heads: int = 8
  num_layers: int = 6
  mlp_dim: int = 2048
  emb_dim: int = 512
  enc_dropout_rate: float = 0.
  vocab_size: int = 32_000
  seq_len: int = 256

  # Encoder:
  patches: Sequence[int] = (16, 16)
  input_seq_len: int = 768
  posemb_type: str = "learn"
  patch_dropout: float = 0.

  # Decoder:
  decoder_num_heads: int = 0
  decoder_num_layers: int = 0
  decoder_mlp_dim: int = 0
  decoder_emb_dim: int = 0
  dec_dropout_rate: float = 0.
  # Probability of masked prediction rather than autoregressive prediciton.
  masked_pred_prob: float = 0.
  # Masking ratio for masked prediction.
  masking_ratio: float = 0.
  # Whether to use bias in decoder MLP blocks and LN.
  decoder_bias: bool = True

  scan: bool = False
  remat_policy: str = "nothing_saveable"

  def setup(self):

    self.encoder = vit.Model(
        patch_size=self.patches,
        width=self.emb_dim,
        depth=self.num_layers,
        mlp_dim=self.mlp_dim,
        num_heads=self.num_heads,
        dropout=self.enc_dropout_rate,
        posemb=self.posemb_type,
        scan=self.scan,
        remat_policy=self.remat_policy,
    )

    self.pos_emb_for_decoder = vit.get_posemb(
        self,
        self.posemb_type,
        (1, self.seq_len),
        self.decoder_emb_dim or self.emb_dim,
        "pos_embedding_decoder",
    )
    self.decoder = Decoder(
        num_layers=self.decoder_num_layers or self.num_layers,
        mlp_dim=self.decoder_mlp_dim or self.mlp_dim,
        num_heads=self.decoder_num_heads or self.num_heads,
        dropout_rate=self.dec_dropout_rate,
        emb_dim=self.decoder_emb_dim or self.emb_dim,
        output_vocab_size=self.vocab_size,
        masked_pred_prob=self.masked_pred_prob,
        masking_ratio=self.masking_ratio,
        use_bias=self.decoder_bias,
        scan=self.scan,
        remat_policy=self.remat_policy,
    )

  def encode(self, image, train=False, return_enc_features=False):
    """Encodes input image or embeddings."""

    _, out = self.encoder(image, train=train)
    encoded = out["encoded"]

    # Return intermediate features if required
    if return_enc_features:
      return encoded, out

    return encoded

  def decode(self, encoded, targets, decode=False, train=False,
             max_decode_length=None):
    """Applies Transformer decoder-branch on encoded-input and target.

    Args:
      encoded: encoded image patches from encoder [B, P, E].
      targets: target text tokens [B, L].
      decode: whether to prepare and use an autoregressive cache.
      train: whether it is training.
      max_decode_length: optional max length for positional embeddings.

    Returns:
      logits array from transformer decoder [B, L, V].
    """
    decoder_mask = None if decode else nn.make_causal_mask(targets)
    logits = self.decoder(
        encoded,
        targets,
        pos_emb=self.pos_emb_for_decoder,
        decoder_mask=decoder_mask,
        decode=decode,
        deterministic=not train,
        max_decode_length=max_decode_length)
    return logits

  def __call__(self, image, text, *, decode=False,
               train=False, return_enc_features=False):
    """Applies Transformer model on the inputs.

    Args:
      image: batch of images [B, H, W, 3].
      text: batch of tokenized texts [B, L].
      decode: whether to prepare and use an autoregressive cache.
      train: whether it is training.
      return_enc_features: whether to return the encoder features.

    Returns:
      logits array from full transformer [B, L, V].
    """
    if return_enc_features:
      encoded, out = self.encode(image, train=train, return_enc_features=True)
      return encoded, out

    encoded = self.encode(image, train=train)

    decoded = self.decode(encoded, text, decode=decode, train=train)
    return decoded


def load(init_params, init_files, model_params=None,
         dont_load=("head/kernel", "head/bias", "cls")):
  """Loads params from init checkpoint and merges into init_params."""

  if isinstance(init_files, str):
    # A shortcut for a single file checkpoint of a vtt model.
    ckpt_params = utils.load_params(init_files)
    ckpt_params = flax.training.checkpoints.convert_pre_linen(ckpt_params)
    ckpt_params = common.merge_params(ckpt_params, init_params, dont_load)

    # Detect attempts to load non-scan checkpoint into scan model if possible.
    if (model_params.get("scan") and
        "encoderblock" not in ckpt_params["encoder"]["Transformer"]):
      raise NotImplementedError("Loading a non-scan checkpoint into a "
                                "scan model is not supported yet!")
    if (not model_params.get("scan")
        and "encoderblock" in ckpt_params["encoder"]["Transformer"]):
      assert "decoder.*" in dont_load or "decoder/.*" in dont_load, (
          "Converting scan decoder to a non-scan one is not supported yet!")
      ckpt_params["encoder"] = utils.jit_cpu()(
          vit.scan_to_pyloop)(ckpt_params["encoder"])

  else:
    assert set(init_files) == {"encoder"}, "Only encoder init supported"
    enc_init = init_files["encoder"]
    ckpt_params = flax.core.freeze(init_params).unfreeze()
    vit_params = ckpt_params["encoder"]
    encoder_params = vit.load(
        vit_params, enc_init, model_cfg={},
        dont_load=dont_load)
    ckpt_params["encoder"] = encoder_params

  ckpt_params["encoder"]["pos_embedding"] = vit.resample_posemb(
      old=ckpt_params["encoder"]["pos_embedding"],
      new=init_params["encoder"]["pos_embedding"])

  return ckpt_params