File size: 5,750 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""MLP-Mixer model."""

from typing import Optional, Tuple
from absl import logging

from big_vision import utils
from big_vision.models import common

import einops
import flax.linen as nn
import flax.training.checkpoints
import jax
import jax.numpy as jnp


class MlpBlock(nn.Module):
  mlp_dim: int

  @nn.compact
  def __call__(self, x):
    y = nn.Dense(self.mlp_dim)(x)
    y = nn.gelu(y)
    return nn.Dense(x.shape[-1])(y)


class MixerBlock(nn.Module):
  """Mixer block layer."""
  tokens_mlp_dim: int
  channels_mlp_dim: int
  drop_p: float

  @nn.compact
  def __call__(self, x, *, train=False):
    y = nn.LayerNorm()(x)
    y = jnp.swapaxes(y, 1, 2)
    y = MlpBlock(self.tokens_mlp_dim, name="token_mixing")(y)
    y = jnp.swapaxes(y, 1, 2)
    x = x + y * _stoch_depth_mask(x, self.drop_p, not train, self.make_rng)
    y = nn.LayerNorm()(x)
    y = MlpBlock(self.channels_mlp_dim, name="channel_mixing")(y)
    return x + y * _stoch_depth_mask(x, self.drop_p, not train, self.make_rng)


class MlpMixer(nn.Module):
  """Mixer architecture."""
  patch_size: Tuple[int, int]
  num_classes: Optional[int]
  num_blocks: int
  hidden_dim: int
  tokens_mlp_dim: int
  channels_mlp_dim: int
  model_name: Optional[str] = None
  stoch_depth: float = 0.0

  @nn.compact
  def __call__(self, image, *, train=False):
    out = {}
    x = out["stem"] = nn.Conv(self.hidden_dim, self.patch_size,
                              strides=self.patch_size, name="stem")(image)
    x = out["input_tokens"] = einops.rearrange(x, "n h w c -> n (h w) c")
    for i in range(self.num_blocks):
      drop_p = (i / max(self.num_blocks - 1, 1)) * self.stoch_depth
      x = out[f"block_{i}"] = MixerBlock(
          self.tokens_mlp_dim, self.channels_mlp_dim, drop_p)(x, train=train)
    x = nn.LayerNorm(name="pre_head_layer_norm")(x)
    x = out["pre_logits"] = jnp.mean(x, axis=1)
    if self.num_classes:
      x = out["logits"] = nn.Dense(
          self.num_classes, kernel_init=nn.initializers.zeros, name="head")(x)
    return x, out


def Model(num_classes=None, *, variant=None, **kw):  # pylint: disable=invalid-name
  """Factory function to easily create a Model variant like "L/16"."""

  if variant is not None:
    model_size, patch = variant.split("/")
    kw.setdefault("patch_size", (int(patch), int(patch)))
    config = {
        "S": {
            "hidden_dim": 512,
            "num_blocks": 8,
            "channels_mlp_dim": 2048,
            "tokens_mlp_dim": 256
        },
        "B": {
            "hidden_dim": 768,
            "num_blocks": 12,
            "channels_mlp_dim": 3072,
            "tokens_mlp_dim": 384
        },
        "L": {
            "hidden_dim": 1024,
            "num_blocks": 24,
            "channels_mlp_dim": 4096,
            "tokens_mlp_dim": 512
        },
        "H": {
            "hidden_dim": 1280,
            "num_blocks": 32,
            "channels_mlp_dim": 5120,
            "tokens_mlp_dim": 640
        },
    }[model_size]

    for k, v in config.items():
      kw.setdefault(k, v)

  logging.info("Mixer config: %s", kw)
  return MlpMixer(num_classes=num_classes, **kw)


def load(init_params, init_file, model_cfg, dont_load=()):
  """Load checkpoint."""

  del model_cfg
  # Shortcut names for some canonical paper checkpoints:
  init_file = {
      # pylint: disable=line-too-long
      # Pretrained models from the MLP-Mixer paper: https://arxiv.org/abs/2105.01601.
      "B-i1k/16": "gs://mixer_models/imagenet1k/Mixer-B_16.npz",
      "L-i1k/16": "gs://mixer_models/imagenet1k/Mixer-L_16.npz",
      "B-i21k/16": "gs://mixer_models/imagenet21k/Mixer-B_16.npz",
      "L-i21k/16": "gs://mixer_models/imagenet21k/Mixer-L_16.npz",
      # pylint: enable=line-too-long
  }.get(init_file, init_file)
  restored_params = utils.load_params(init_file)
  restored_params = flax.training.checkpoints.convert_pre_linen(restored_params)

  if "Mixer" in restored_params:
    restored_params["pre_head_layer_norm"] = restored_params["Mixer"].pop(
        "encoder_norm"
    )
    restored_params["stem"] = restored_params.pop("embedding")
    def unflatten_dense(d):
      return {
          "Dense_0": {
              "bias": d["bias1"].squeeze(),
              "kernel": d["kernel1"].squeeze(),
          },
          "Dense_1": {
              "bias": d["bias2"].squeeze(),
              "kernel": d["kernel2"].squeeze(),
          },
      }
    for k, v in restored_params["Mixer"].items():
      assert k.startswith("encoderblock_"), k
      v["token_mixing"] = unflatten_dense(v.pop("token_mixing_phase_0"))
      v["channel_mixing"] = unflatten_dense(v.pop("channel_mixing_phase_0"))
      restored_params["MixerBlock_" + k[len("encoderblock_"):]] = v
    del restored_params["Mixer"]

  # possibly use the random init for some of the params (such as, the head).
  restored_params = common.merge_params(restored_params, init_params, dont_load)

  return restored_params


def _stoch_depth_mask(x, drop_p, deterministic, make_rng):
  if not deterministic and drop_p:
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)
    return 1.0 - jax.random.bernoulli(make_rng("dropout"), drop_p, shape)
  return 1.0