File size: 11,686 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Multi-host image->text and text->image retrieval evaluation.
Example how to add to config:
config.evals {}
config.evals.retieval = dict(log_steps=1200, type='proj.image_text.retrieval')
config.evals.retrieval.dataset = 'coco_captions'
config.evals.retrieval.txt_name = ('captions', 'text')
# Note that initial "decode|" is not needed.
config.evals.retrieval.pp_img = 'resize(224)|value_range(-1,1)'
# Raw text strings use key "texts" in feature dict. The evaluator expects
# tokenized text with key "labels".
config.evals.retrieval.pp_txt = (
'tokenize(max_len=16, eos="sticky", pad_value=1, inkey="texts", '
' outkey="labels")')
Example to support precomputed data:
See `big_vision/configs/proj/image_text/lit.py`.
"""
import functools
import operator
import time
from absl import logging
from big_vision import input_pipeline
from big_vision.evaluators.proj.image_text import image_text_retrieval
import big_vision.pp.builder as pp_builder
import jax
import jax.numpy as jnp
from jax.sharding import NamedSharding
from jax.sharding import PartitionSpec as P
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds
# Temporary global flag to facilitate backwards compatability. Will be removed
# by the end of year 2023.
API = "jit"
def _with_infinite_padding(dataset):
"""Adds "infinite padding" to the dataset."""
filler_element = tf.nest.map_structure(
lambda spec: tf.zeros(spec.shape, spec.dtype)[None], dataset.element_spec)
filler_element["mask"] = [False]
filler_dataset = tf.data.Dataset.from_tensor_slices(filler_element)
dataset = dataset.map(
lambda features: dict(mask=True, **features),
num_parallel_calls=tf.data.experimental.AUTOTUNE)
return dataset.concatenate(filler_dataset.repeat(None))
# This is needed so retrieval_test can replace dataset info.
def _get_dataset_info(builder):
return builder.info
def prepare_datasets(
dataset, *, pp_img, pp_txt, txt_name, offset=0, cache_final=False
):
"""Returns unbatched `ds_images, ds_texts` datasets.
Args:
dataset: An image-text `tf.data.Dataset` that is expected to contain the
following features: "image" (dtype=uint8, shape=[None, None, 3]),
`txt_name` (dtype=string, shape=[None]).
pp_img: String defining pre-processing for images. The pre-processing can
expect the following features to be prepared: "image", "id". The
pre-processing should convert the "image" (dtype=uint8,
shape=[None, None, 3]) to "image" (dtype=float32, shape=[sz, sz, 3]).
pp_txt: String defining pre-processing for text. The pre-processing can
expect the following features to be prepared: "texts", "id", "caption_id".
The pre-processing should convert the "texts" (dtype=string, shape=[])
into a tokenized "labels" (dtype=int32, shape=[max_len]).
txt_name: Name of the text feature to unroll in the original `dataset`. Can
be a simple string feature name, or an iterable of strings to specify a
nested feature (e.g. for "coco_captions", this would be
`('captions', 'text')`).
offset: Offset that should be added to enumerated examples to generate IDs.
In a multi-host setup, this is typically set to a value large enough to
make all IDs distinct.
cache_final: Whether the dataset should be cached.
Returns:
Image and text datasets.
"""
def get_feature_value(data, feature_name):
if isinstance(feature_name, str):
feature_name = [feature_name]
return functools.reduce(operator.getitem, feature_name, data)
def get_captions(idx, features):
"""Returns a dataset with unrolled "caption" for every example."""
texts = get_feature_value(features, txt_name)
texts = tf.experimental.numpy.atleast_1d(texts) # For single-text GT.
texts_n = tf.shape(texts)[0]
return tf.data.Dataset.from_tensor_slices({
"id": tf.tile([idx + offset], [texts_n]),
"caption_i": tf.stack(tf.range(texts_n)),
"texts": tf.stack(texts),
})
def add_id(idx, features):
return {**features, "id": idx + offset}
ds_images = dataset.enumerate().map(add_id).map(
pp_builder.get_preprocess_fn(f"{pp_img}|keep('id', 'image')"))
ds_texts = dataset.enumerate().flat_map(get_captions).map(
pp_builder.get_preprocess_fn(
f"{pp_txt}|keep('id', 'caption_i', 'labels')"))
if cache_final:
ds_images, ds_texts = ds_images.cache(), ds_texts.cache()
return ds_images, ds_texts
def _split_and_batch(dataset_name, batch_size, split, get_ds, data_dir=None):
"""Splits dataset, calls `get_ds` and returns padded + batched datasets."""
assert not batch_size % jax.device_count(), (
f"batch_size={batch_size} % jax.device_count()={jax.device_count()}")
builder = tfds.builder(dataset_name, data_dir=data_dir)
info = _get_dataset_info(builder)
num_examples = info.splits[split].num_examples
ds_images, ds_texts = get_ds(
builder.as_dataset(split=tfds.split_for_jax_process(split)),
offset=jax.process_index() * num_examples,
)
return (
_with_infinite_padding(ds_images).batch(batch_size),
_with_infinite_padding(ds_texts).batch(batch_size),
)
class Evaluator:
"""Image/text retrieval evaluator."""
def __init__(self,
predict_fn,
*,
dataset,
pp_img,
pp_txt,
txt_name,
batch_size,
devices,
data_dir=None,
split="test",
cache_final=True):
"""Initializes a new zero-shot image/text retrieval evaluator.
See `prepare_datasets()` for details on how the dataset is pre-processed.
Args:
predict_fn: Prediction function with signature
`zimg, ztxt, out = predict_fn(params, images, texts)`
dataset: The TFDS dataset name of the eval data.
pp_img: Preprocessing string for images. Preprocessed features should
contain key "image" with value that can be batched and is suitable for
`predict_fn(images)` input``.
pp_txt: Preprocessing string for texts. Can expect "texts" key as an input
(shape=[], dtype=string), and is expected to produce "labels" key that
is suitable for `predict_fn(texts)` input.
txt_name: The name of the feature of captions (can be a tuple to look up a
value in a nested feature dictionary). Expected shape=[None],
dtype=string. specified then items are used as lookup path.
batch_size: Global batch size.
devices: list of devices.
data_dir: Optional dir to load the TFDS dataset from.
split: The split of the eval data.
cache_final: Wether preprocessed dataset should be cached.
"""
self.ds_images, self.ds_texts = _split_and_batch(
dataset,
batch_size,
split,
functools.partial(
prepare_datasets,
pp_img=pp_img,
pp_txt=pp_txt,
txt_name=txt_name,
cache_final=cache_final,
),
data_dir=data_dir,
)
self._axis_name = "batch"
self.devices = devices
mesh = jax.sharding.Mesh(devices, ("devices",))
def embed_images(train_state, images):
zimg, _, _ = predict_fn(train_state, {"image": images})
return zimg
def embed_texts(train_state, texts):
_, ztxt, _ = predict_fn(train_state, {"labels": texts})
return ztxt
self._embed_images_p = jax.jit(embed_images,
out_shardings=NamedSharding(mesh, P()))
self._embed_texts_p = jax.jit(embed_texts,
out_shardings=NamedSharding(mesh, P()))
self._all_gather_p = jax.jit(
lambda x: x, out_shardings=NamedSharding(mesh, P()))
self._count_p = jax.jit(jnp.sum, out_shardings=NamedSharding(mesh, P()))
self._compiled = set()
def _embed(self, name, train_state, ds, embed_fn, id_names):
"""Embeds features name `name` using `embed_fn`.
Args:
name: Feature name to be embedded.
train_state: train_state for the predict_fn.
ds: The dataset.
embed_fn: A pmapped function that returns the embeddings.
id_names: An iterable of feature names that should be collected.
Returns:
A dictionary with "embeddings" and `id_names` as keys.
"""
ns = []
embeddings = []
ids = {id_name: [] for id_name in list(id_names) + ["mask"]}
t0 = time.time()
ds_b = input_pipeline.start_global(ds, self.devices)
for batch in ds_b:
ns.append(jax.device_get(self._count_p(batch["mask"])))
# Due to infinite padding, this loop will never end. We will stop once
# all processes only process padded data. We don't check the latest
# DeviceArray `ns[-1]` Because we want to keep our computation async for
# efficiency reasons.
if len(ns) >= 2 and ns[-2] == 0:
break
embs = embed_fn(train_state, batch[name])
if embed_fn not in self._compiled:
logging.info("Compiled %s embeddings in %.3fs", name, time.time() - t0)
t0 = time.time()
self._compiled.add(embed_fn)
embeddings.append(jax.device_get(embs))
for id_name in ids:
ids[id_name].append(jax.device_get(self._all_gather_p(batch[id_name])))
# Only access DeviceArray at end of loop for better efficiency.
ns = np.array(ns)
embeddings = np.concatenate(embeddings)
ids = {k: np.concatenate(v) for k, v in ids.items()}
masks = ids.pop("mask").astype(bool)
logging.info("Processed %s in %d steps - ...%s", name, len(ns), ns[-10:])
n = ns.sum()
logging.info("Totalling %d %s in %.3fs", n, name, time.time() - t0)
return {
"embeddings": embeddings[masks],
**{k: v[masks] for k, v in ids.items()},
}
def evaluate(self, train_state):
"""Returns evaluation results."""
images = self._embed("image", train_state, self.ds_images,
self._embed_images_p, ("id",))
texts = self._embed("labels", train_state, self.ds_texts,
self._embed_texts_p, ("id", "caption_i"))
# Shapes: (nimg, emb) * (emb, ntxt) -> (nimg, ntxt)
similarities = np.dot(images["embeddings"], texts["embeddings"].T)
t0 = time.time()
id2img = {id_: i for i, id_ in enumerate(images["id"])}
text_image_correspondence = [id2img[id_] for id_ in texts["id"]]
img2txt = image_text_retrieval.image_to_text_retrieval_eval(
-similarities, text_image_correspondence)
txt2img = image_text_retrieval.text_to_image_retrieval_eval(
-similarities, text_image_correspondence)
logging.info("Computed retrieval metrics in %.3fs", time.time() - t0)
return dict(
images=images,
texts=texts,
img2txt=img2txt,
txt2img=txt2img,
)
def run(self, train_state):
"""Returns metrics."""
results = self.evaluate(train_state)
return [(f"{direction}_{k.lower()}", v)
for direction in ("img2txt", "txt2img")
for k, v in results[direction].items()]
|