File size: 1,770 Bytes
1146e98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
model-index:
- name: rap_phase2_MODEL2_15march_10i
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# rap_phase2_MODEL2_15march_10i

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.7443        | 1.0   | 1170  | 0.3416          |
| 1.439         | 2.0   | 2340  | 0.1891          |
| 0.2797        | 3.0   | 3510  | 0.1757          |
| 0.1032        | 4.0   | 4680  | 0.0050          |
| 0.0382        | 5.0   | 5850  | 0.0017          |
| 0.31          | 6.0   | 7020  | 0.1315          |
| 0.2989        | 7.0   | 8190  | 0.1042          |
| 0.501         | 8.0   | 9360  | 0.0052          |
| 0.0674        | 9.0   | 10530 | 0.0005          |
| 0.062         | 10.0  | 11700 | 0.0000          |


### Framework versions

- Transformers 4.37.0
- Pytorch 2.1.1+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0