File size: 2,026 Bytes
121ee05 a6cde4d 121ee05 a6cde4d e7bf5a3 a6cde4d 56bb402 a6cde4d 92986d8 a6cde4d 92986d8 56bb402 92986d8 56bb402 92986d8 a6cde4d 92986d8 e7bf5a3 92986d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: mit
datasets:
- prabinpanta0/Rep00Zon
language:
- en
metrics:
- accuracy
pipeline_tag: question-answering
tags:
- general_knowledge
- 'Question_Answers'
---
# ZenGQ - BERT for Question Answering
This is a fine-tuned BERT model for question answering tasks, trained on a custom dataset.
## Model Details
- **Model:** BERT-base-uncased
- **Task:** Question Answering
- **Dataset:** [Rep00Zon](https://huggingface.co/datasets/prabinpanta0/Rep00Zon)
## Usage
### Load the model
```python
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline
# Load the tokenizer and model from Hugging Face
tokenizer = AutoTokenizer.from_pretrained("prabinpanta0/ZenGQ")
model = AutoModelForQuestionAnswering.from_pretrained("prabinpanta0/ZenGQ")
# Create a pipeline for question answering
qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
# Define your context and questions
contexts = ["Berlin is the capital of Germany.",
"Paris is the capital of France.",
"Madrid is the capital of Spain."]
questions = [
"What is the capital of Germany?",
"Which city is the capital of France?",
"What is the capital of Spain?"
]
# Get answers
for context, question in zip(contexts, questions):
result = qa_pipeline(question=question, context=context)
print(f"Question: {question}")
print(f"Answer: {result['answer']}\n")
```
### Training Details
- Epochs: 3
- Training Loss: 2.050335, 1.345047, 1.204442
### Token
```
text = "Berlin is the capital of Germany. Paris is the capital of France. Madrid is the capital of Spain."
tokens = tokenizer.tokenize(text)
print(tokens)
```
*Output:*
```['berlin', 'is', 'the', 'capital', 'of', 'germany', '.', 'paris', 'is', 'the', 'capital', 'of', 'france', '.', 'madrid', 'is', 'the', 'capital', 'of', 'spain', '.']```
### Dataset
The model was trained on the [Rep00Zon](https://huggingface.co/datasets/prabinpanta0/Rep00Zon) dataset.
### License
This model is licensed under the MIT License. |