File size: 2,985 Bytes
3b776b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: action-policy-plans-classifier
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# action-policy-plans-classifier

This model is a fine-tuned version of [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6839
- Precision Micro: 0.7089
- Precision Weighted: 0.7043
- Precision Samples: 0.4047
- Recall Micro: 0.7066
- Recall Weighted: 0.7066
- Recall Samples: 0.4047
- F1-score: 0.4041

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2.915e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 7

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision Micro | Precision Weighted | Precision Samples | Recall Micro | Recall Weighted | Recall Samples | F1-score |
|:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------------:|:-----------------:|:------------:|:---------------:|:--------------:|:--------:|
| 0.7333        | 1.0   | 253  | 0.5828          | 0.625           | 0.6422             | 0.4047            | 0.7098       | 0.7098          | 0.4065         | 0.4047   |
| 0.5905        | 2.0   | 506  | 0.5593          | 0.6292          | 0.6318             | 0.4437            | 0.7760       | 0.7760          | 0.4446         | 0.4434   |
| 0.4934        | 3.0   | 759  | 0.5269          | 0.6630          | 0.6637             | 0.4319            | 0.7571       | 0.7571          | 0.4347         | 0.4325   |
| 0.4018        | 4.0   | 1012 | 0.5645          | 0.6449          | 0.6479             | 0.4456            | 0.7792       | 0.7792          | 0.4465         | 0.4453   |
| 0.3235        | 5.0   | 1265 | 0.6101          | 0.6964          | 0.6929             | 0.4220            | 0.7382       | 0.7382          | 0.4229         | 0.4217   |
| 0.2638        | 6.0   | 1518 | 0.6692          | 0.6888          | 0.6841             | 0.4111            | 0.7192       | 0.7192          | 0.4120         | 0.4108   |
| 0.2197        | 7.0   | 1771 | 0.6839          | 0.7089          | 0.7043             | 0.4047            | 0.7066       | 0.7066          | 0.4047         | 0.4041   |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3