Post
1437
Hyperfast Contextual Custom LLM with Agents, Multitokens, Explainable AI, and Distillation https://mltblog.com/4dNPSnB
New additions to this ground-breaking system include multi-token distillation when processing prompts, agents to meet user intent, more NLP, and a command prompt menu accepting both standard prompts and various actions.
I also added several illustrations, featuring xLLM in action with a full session and sample commands to fine-tune in real-time. All the code, input sources (anonymized corporate corpus from fortune 100 company), contextual backend tables including embeddings, are on GitHub. My system has zero weight, no transformer, and no neural network. It relies on explainable AI, does not require training, is fully reproducible, and fits in memory. Yet your prompts can retrieve relevant full text entities from the corpus with no latency — including URLs, categories, titles, email addresses, and so on — thanks to well-designed architecture.
Read more, get the code, paper and everything for free, at https://mltblog.com/4dNPSnB
New additions to this ground-breaking system include multi-token distillation when processing prompts, agents to meet user intent, more NLP, and a command prompt menu accepting both standard prompts and various actions.
I also added several illustrations, featuring xLLM in action with a full session and sample commands to fine-tune in real-time. All the code, input sources (anonymized corporate corpus from fortune 100 company), contextual backend tables including embeddings, are on GitHub. My system has zero weight, no transformer, and no neural network. It relies on explainable AI, does not require training, is fully reproducible, and fits in memory. Yet your prompts can retrieve relevant full text entities from the corpus with no latency — including URLs, categories, titles, email addresses, and so on — thanks to well-designed architecture.
Read more, get the code, paper and everything for free, at https://mltblog.com/4dNPSnB