Join the conversation

Join the community of Machine Learners and AI enthusiasts.

Sign Up
MonsterMMORPG 
posted an update Apr 14
Post
3646
Watch the full tutorial here : https://youtu.be/0t5l6CP9eBg

The tutorial is over 2 hours literally with manually fixed captions and perfect video chapters.

Most Awaited Full Fine Tuning (with DreamBooth effect) Tutorial Generated Images - Full Workflow Shared In The Comments - NO Paywall This Time - Explained OneTrainer - Cumulative Experience of 16 Months Stable Diffusion

In this tutorial, I am going to show you how to install OneTrainer from scratch on your computer and do a Stable Diffusion SDXL (Full Fine-Tuning 10.3 GB VRAM) and SD 1.5 (Full Fine-Tuning 7GB VRAM) based models training on your computer and also do the same training on a very cheap cloud machine from MassedCompute if you don't have such computer.

Tutorial Readme File ⤵️
https://github.com/FurkanGozukara/Stable-Diffusion/blob/main/Tutorials/OneTrainer-Master-SD-1_5-SDXL-Windows-Cloud-Tutorial.md

Register Massed Compute From Below Link (could be necessary to use our Special Coupon for A6000 GPU for 31 cents per hour) ⤵️
https://bit.ly/Furkan-Gözükara

Coupon Code for A6000 GPU is : SECourses


0:00 Introduction to Zero-to-Hero Stable Diffusion (SD) Fine-Tuning with OneTrainer (OT) tutorial
3:54 Intro to instructions GitHub readme
4:32 How to register Massed Compute (MC) and start virtual machine (VM)
5:48 Which template to choose on MC
6:36 How to apply MC coupon
8:41 How to install OT on your computer to train
9:15 How to verify your Python, Git, FFmpeg and Git installation
12:00 How to install ThinLinc and start using your MC VM
12:26 How to setup folder synchronization and file sharing between your computer and MC VM
13:56 End existing session in ThinClient
14:06 How to turn off MC VM
14:24 How to connect and start using VM
14:41 When use end existing session
16:38 How to download very best OT preset training configuration for SD 1.5 & SDXL models
18:00 How to load configuration preset
18:38 Full explanation of OT configuration and best hyper parameters for SDXL
.
.
.