license: apache-2.0
tags:
- generated_from_trainer
- email generation
- email
datasets:
- aeslc
- postbot/multi_emails
widget:
- text: >-
Hey <NAME>,
Thank you for signing up for my weekly newsletter. Before we get started,
you'll have to confirm your email address.
example_title: newsletter
- text: >-
Hi <NAME>,
I hope this email finds you well. I wanted to reach out and ask about
office hours
example_title: office hours
- text: >-
Greetings <NAME>,
I hope you had a splendid evening at the Company sausage eating festival.
I am reaching out because
example_title: festival
- text: |-
Good Morning <NAME>,
I was wondering when the next
example_title: event
- text: URGENT - I need the TPS reports
example_title: URGENT
- text: |-
Hi <NAME>,
I hope this email finds you extremely well.
example_title: emails that find you
parameters:
min_length: 4
max_length: 128
length_penalty: 0.5
no_repeat_ngram_size: 3
do_sample: false
num_beams: 4
early_stopping: true
repetition_penalty: 4.5
distilgpt2-emailgen
Why write the rest of your email when you can generate it?
from transformers import pipeline
model_tag = "postbot/distilgpt2-emailgen"
generator = pipeline(
'text-generation',
model=model_tag,
do_sample=False,
early_stopping=True,
)
prompt = """
Hello,
Following up on the bubblegum shipment."""
generator(
prompt,
max_length=64,
) # generate
A script to use this on CPU/command line can be found here :)
For this model, formatting matters. The results may be (significantly) different between the structure outlined above and
prompt = "Hey, just wanted to ..."
etc.
Model description
This model is a fine-tuned version of distilgpt2 on a dataset of 50k emails, including the classic aeslc
dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6247
Intended uses & limitations
The intended use of this model is to provide suggestions to "autocomplete" the rest of your email. Said another way, it should serve as a tool to write predictable emails faster. It is not intended to write entire emails; at least some input is required to guide the direction of the model.
Please verify any suggestions by the model for A) False claims and B) negation statements before accepting/sending something.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 32
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.02
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.8299 | 1.0 | 248 | 2.7971 |
2.6984 | 2.0 | 496 | 2.6826 |
2.7022 | 3.0 | 744 | 2.6361 |
2.6436 | 4.0 | 992 | 2.6245 |
2.6195 | 5.0 | 1240 | 2.6247 |
Framework versions
- Transformers 4.21.1
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1