|
--- |
|
license: bigscience-bloom-rail-1.0 |
|
tags: |
|
- text generation |
|
- generated_from_trainer |
|
- email generation |
|
- email |
|
- emailgen |
|
datasets: |
|
- aeslc |
|
- postbot/multi-emails-100k |
|
|
|
widget: |
|
- text: "Good Morning Professor Beans, |
|
|
|
Hope you are doing well. I just wanted to reach out and ask if differential calculus will be on the exam" |
|
example_title: "email to prof" |
|
- text: "嘿<NAME>\n\n感谢你注册我的每周通讯。在我们开始之前,你必须确认你的电子邮件地址。." |
|
example_title: "通讯" |
|
- text: "Hi <NAME>,\n\nI hope this email finds you well. I wanted to reach out and ask about office hours" |
|
example_title: "office hours" |
|
- text: "Grüße <NAME>,\n\nIch hoffe, du hattest einen schönen Abend beim Wurstessen der Firma. Ich melde mich, weil" |
|
example_title: "Wurstessen festival" |
|
- text: "Guten Morgen Harold,\n\nich habe mich gefragt, wann die nächste" |
|
example_title: "event" |
|
- text: "URGENT - I need the TPS reports" |
|
example_title: "URGENT" |
|
- text: "Hoi Archibald,\n\nik hoop dat deze e-mail je goed doet." |
|
example_title: "e-mails die je vinden" |
|
- text: "Hello there.\n\nI just wanted to reach out and check in to" |
|
example_title: "checking in" |
|
- text: "Hello <NAME>,\n\nI hope this email finds you well. I wanted to reach out and see if you've enjoyed your time with us" |
|
example_title: "work well" |
|
- text: "Hi <NAME>,\n\nI hope this email finds you well. I wanted to reach out and see if we could catch up" |
|
example_title: "catch up" |
|
- text: "Jestem <NAME>,\n\nWłaśnie wprowadziłem się do obszaru i chciałem dotrzeć i uzyskać kilka szczegółów na temat tego, gdzie mogę dostać artykuły spożywcze i" |
|
example_title: "zakupy spożywcze" |
|
parameters: |
|
min_length: 32 |
|
max_length: 128 |
|
no_repeat_ngram_size: 2 |
|
do_sample: True |
|
temperature: 0.2 |
|
top_k: 20 |
|
top_p: 0.95 |
|
repetition_penalty: 3.5 |
|
length_penalty: 0.9 |
|
|
|
--- |
|
|
|
|
|
# bloom-1b1-emailgen - v1 |
|
|
|
This model is a fine-tuned version of [bigscience/bloom-1b1](https://huggingface.co/bigscience/bloom-1b1) on the ` postbot/multi-emails-100k` dataset. |
|
|
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.7397 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
⚠️ **this model did not have any of the original layers frozen during training** ⚠️ |
|
- while this is still an area of investigation, the model likely needs to have some layers frozen during fine-tuning to retain the multilingual capabilities in balance with learning how to write emails. |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 7e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- gradient_accumulation_steps: 64 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.03 |
|
- num_epochs: 2.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 1.8465 | 1.0 | 256 | 1.8656 | |
|
| 1.4903 | 2.0 | 512 | 1.7396 | |
|
|
|
|
|
### details |
|
|
|
```md |
|
***** eval metrics ***** |
|
|
|
epoch = 2.0 |
|
eval_loss = 1.7397 |
|
eval_runtime = 0:04:27.41 |
|
eval_samples = 4216 |
|
eval_samples_per_second = 15.766 |
|
eval_steps_per_second = 15.766 |
|
perplexity = 5.6956 |
|
``` |
|
### Framework versions |
|
|
|
- Transformers 4.25.0.dev0 |
|
- Pytorch 1.13.0+cu117 |
|
- Datasets 2.6.1 |
|
- Tokenizers 0.13.1 |
|
|