File size: 7,742 Bytes
6530c70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
{
"cells": [
{
"cell_type": "markdown",
"id": "2a3eb6d8",
"metadata": {},
"source": [
"# 推論テストコード\n",
"\n",
"運営様より提供されているテストコードをベースにした推論用コードです。unslothを使用しますが、conda環境を作らなければ動作しませんので、ご注意ください。\n",
"12-16 (2024)\n",
"\n",
"## 環境構築例\n",
"\n",
"```bash\n",
"# install conda\n",
"curl -L -O \"https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-$(uname)-$(uname -m).sh\"\n",
"bash Miniforge3-$(uname)-$(uname -m).sh\n",
"\n",
"\n",
"source ~/miniforge3/etc/profile.d/mamba.sh\n",
"\n",
"mamba create --name unsloth_env \\\n",
" python=3.10 \\\n",
" pytorch-cuda=12.1 \\\n",
" pytorch cudatoolkit xformers -c pytorch -c nvidia -c xformers \\\n",
" -y\n",
" \n",
"mamba activate unsloth_env\n",
"\n",
"pip install \"unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git\"\n",
"\n",
"pip install --no-deps \"trl<0.9.0\" peft accelerate bitsandbytes\n",
"\n",
"pip install ipykernel\n",
"\n",
"ipython kernel install --name=unsloth --display-name=unsloth\n",
"```\n",
"\n",
"上記環境構築後、`unsloth`カーネルで本jupyter notebookを動作させてください。"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "1ed5ea31",
"metadata": {},
"outputs": [],
"source": [
"from unsloth import FastLanguageModel\n",
"from peft import PeftModel\n",
"import torch\n",
"import json\n",
"from tqdm import tqdm\n",
"import re\n",
"import datasets"
]
},
{
"cell_type": "markdown",
"id": "8e07b721",
"metadata": {},
"source": [
"## モデル読み込み"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "50a5cebd",
"metadata": {},
"outputs": [],
"source": [
"model_id = \"llm-jp/llm-jp-3-13b\"\n",
"adapter_id = \"poprap/llm-jp-3-13b-it-2-3\"\n",
"adapter_dpo_id = \"poprap/llm-jp-3-13b-dpo\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "e800c15b",
"metadata": {},
"outputs": [],
"source": [
"HF_TOKEN = \"\" "
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "a1240544",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Unsloth: WARNING `trust_remote_code` is True.\n",
"Are you certain you want to do remote code execution?\n",
"==((====))== Unsloth 2024.12.4: Fast Llama patching. Transformers:4.46.3.\n",
" \\\\ /| GPU: NVIDIA L4. Max memory: 21.964 GB. Platform: Linux.\n",
"O^O/ \\_/ \\ Torch: 2.5.1. CUDA: 8.9. CUDA Toolkit: 12.1. Triton: 3.1.0\n",
"\\ / Bfloat16 = TRUE. FA [Xformers = 0.0.28.post3. FA2 = False]\n",
" \"-____-\" Free Apache license: http://github.com/unslothai/unsloth\n",
"Unsloth: Fast downloading is enabled - ignore downloading bars which are red colored!\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Downloading shards: 100%|██████████| 6/6 [01:38<00:00, 16.49s/it]\n",
"Loading checkpoint shards: 100%|██████████| 6/6 [00:09<00:00, 1.61s/it]\n"
]
}
],
"source": [
"# unslothのFastLanguageModelで元のモデルをロード。\n",
"dtype = None # Noneにしておけば自動で設定\n",
"load_in_4bit = True # 今回は13Bモデルを扱うためTrue\n",
"\n",
"model, tokenizer = FastLanguageModel.from_pretrained(\n",
" model_name=model_id,\n",
" dtype=dtype,\n",
" load_in_4bit=load_in_4bit,\n",
" trust_remote_code=True,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "e0599d87",
"metadata": {},
"outputs": [],
"source": [
"# 元のモデルにLoRAのアダプタを統合。\n",
"model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)\n",
"model = PeftModel.from_pretrained(model, adapter_dpo_id, token = HF_TOKEN)"
]
},
{
"cell_type": "markdown",
"id": "2a2830ce",
"metadata": {},
"source": [
"## タスクjsonlの読み込み"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "3547c974",
"metadata": {},
"outputs": [],
"source": [
"ds = []\n",
"\n",
"with open(\"elyza-tasks-100-TV_0.jsonl\", \"r\") as f:\n",
" item = \"\"\n",
" for line in f:\n",
" line = line.strip()\n",
" item += line\n",
" if item.endswith(\"}\"):\n",
" ds.append(json.loads(item))\n",
" item = \"\""
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "0c1a580f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'task_id': 0, 'input': '野球選手が今シーズン活躍するために取り組むべき5つのことを教えてください。'}"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ds[0]"
]
},
{
"cell_type": "markdown",
"id": "a18d3ccd",
"metadata": {},
"source": [
"## 推論 \n",
"\n",
"何度か試したところ推論に要する時間はまちまちです。サーバーのリソースの問題でしょうか。\n",
"一時間はかかりません。"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "db654962",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 100/100 [14:17<00:00, 8.58s/it]\n"
]
}
],
"source": [
"# 推論するためにモデルのモードを変更\n",
"FastLanguageModel.for_inference(model)\n",
"\n",
"results = []\n",
"for dt in tqdm(ds):\n",
" input = dt[\"input\"]\n",
"\n",
" prompt = f\"\"\"### 指示\\n{input}\\n### 回答\\n\"\"\"\n",
"\n",
" inputs = tokenizer([prompt], return_tensors = \"pt\").to(model.device)\n",
"\n",
" outputs = model.generate(\n",
" **inputs,\n",
" max_new_tokens=1024,\n",
" use_cache = True, \n",
" do_sample=False, \n",
" repetition_penalty=1.2\n",
" )\n",
" prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\\n### 回答')[-1]\n",
" \n",
" results.append({\"task_id\": dt['task_id'], \"input\": input, \"output\": prediction})"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "9a18a4f8",
"metadata": {},
"outputs": [],
"source": [
"json_file_id = re.sub(\".*/\", \"\", adapter_id)\n",
"with open(f\"{json_file_id}_output.jsonl\", 'w', encoding='utf-8') as f:\n",
" for result in results:\n",
" json.dump(result, f, ensure_ascii=False)\n",
" f.write('\\n')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a2ebf493",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "unsloth",
"language": "python",
"name": "unsloth"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|