File size: 1,909 Bytes
8ccea98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
language:
- qu
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- pollitoconpapass/quechua-cuzco-bible-audio-dataset
model-index:
- name: Whisper Small
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Quechua Bible dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0002

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.0765        | 12.5  | 500  | 0.0630          |
| 0.0413        | 25.0  | 1000 | 0.0294          |
| 0.0173        | 37.5  | 1500 | 0.0191          |
| 0.0161        | 50.0  | 2000 | 0.0116          |
| 0.0078        | 62.5  | 2500 | 0.0046          |
| 0.0071        | 75.0  | 3000 | 0.0039          |
| 0.0019        | 87.5  | 3500 | 0.0015          |
| 0.001         | 100.0 | 4000 | 0.0002          |
| 0.0007        | 112.5 | 4500 | 0.0002          |
| 0.0           | 125.0 | 5000 | 0.0002          |


### Framework versions

- Transformers 4.39.0
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2