File size: 2,350 Bytes
b474885 9cf99e0 b474885 9cf99e0 b474885 9cf99e0 b474885 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- cd45rb
model-index:
- name: cdetr-r50-cd45rb-all-4ah
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cdetr-r50-cd45rb-all-4ah
This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on the cd45rb dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7969
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.165 | 1.0 | 2303 | 2.0257 |
| 1.9843 | 2.0 | 4606 | 1.9742 |
| 1.9296 | 3.0 | 6909 | 1.9123 |
| 1.8949 | 4.0 | 9212 | 1.8928 |
| 1.8751 | 5.0 | 11515 | 1.9116 |
| 1.854 | 6.0 | 13818 | 1.8909 |
| 1.8354 | 7.0 | 16121 | 1.8533 |
| 1.8257 | 8.0 | 18424 | 1.8407 |
| 1.8101 | 9.0 | 20727 | 1.8453 |
| 1.8025 | 10.0 | 23030 | 1.8344 |
| 1.8177 | 11.0 | 25333 | 1.8496 |
| 1.8092 | 12.0 | 27636 | 1.8584 |
| 1.8016 | 13.0 | 29939 | 1.8277 |
| 1.7961 | 14.0 | 32242 | 1.8230 |
| 1.7853 | 15.0 | 34545 | 1.8130 |
| 1.7769 | 16.0 | 36848 | 1.8098 |
| 1.7708 | 17.0 | 39151 | 1.8030 |
| 1.7626 | 18.0 | 41454 | 1.7994 |
| 1.7596 | 19.0 | 43757 | 1.8018 |
| 1.7547 | 20.0 | 46060 | 1.7969 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.13.3
|