File size: 5,662 Bytes
3e0712e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Loading Lora Configuration"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from peft import LoraConfig\n",
    "\n",
    "lora_config = LoraConfig(\n",
    "    r=8,\n",
    "    target_modules=[\"q_proj\", \"o_proj\", \"k_proj\", \"v_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"],\n",
    "    task_type=\"CAUSAL_LM\",\n",
    ")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Loading Model and Tokenizer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/ubuntu/Desktop/GEMMA_FINETUNE/.venv/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n",
      "`config.hidden_act` is ignored, you should use `config.hidden_activation` instead.\n",
      "Gemma's activation function will be set to `gelu_pytorch_tanh`. Please, use\n",
      "`config.hidden_activation` if you want to override this behaviour.\n",
      "See https://github.com/huggingface/transformers/pull/29402 for more details.\n",
      "Loading checkpoint shards: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2/2 [00:01<00:00,  1.03it/s]\n"
     ]
    }
   ],
   "source": [
    "import torch\n",
    "from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig\n",
    "\n",
    "model_id = \"google/gemma-2b\"\n",
    "bnb_config = BitsAndBytesConfig(\n",
    "    load_in_4bit=True,\n",
    "    bnb_4bit_quant_type=\"nf4\",\n",
    "    bnb_4bit_compute_dtype=torch.bfloat16\n",
    ")\n",
    "\n",
    "hf_token = \"ADD_TOKEN_HERE\" # also take permission from gemma from huggingface\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token)\n",
    "model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config, device_map={\"\":0}, token=hf_token)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Loading Datasets"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from datasets import load_dataset\n",
    "\n",
    "data = load_dataset(\"Yemmy1000/cybersec_embedding_llama_chat\")\n",
    "data"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Setting Training Parameters and Fine-Tuning"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import transformers\n",
    "from trl import SFTTrainer\n",
    "\n",
    "def formatting_func(examples):\n",
    "    texts = []\n",
    "    instructions = examples['INSTRUCTION']\n",
    "    responses = examples['RESPONSE']\n",
    "\n",
    "    for idx in range(len(instructions)):\n",
    "        instruction = instructions[idx].split('\\n')[1]\n",
    "        response = responses[idx]\n",
    "        text = f\"Instruction: {instruction} \\n Output: {response}<eos>\"\n",
    "        texts.append(text)\n",
    "    \n",
    "    return texts\n",
    "\n",
    "trainer = SFTTrainer(\n",
    "    model=model,\n",
    "    train_dataset=data[\"train\"],\n",
    "    args=transformers.TrainingArguments(\n",
    "        per_device_train_batch_size=1,\n",
    "        gradient_accumulation_steps=4,\n",
    "        warmup_steps=100,\n",
    "        num_train_epochs=4,\n",
    "        learning_rate=2e-4,\n",
    "        fp16=False,\n",
    "        logging_steps=200,\n",
    "        output_dir=\"outputs\",\n",
    "        optim=\"paged_adamw_8bit\"\n",
    "    ),\n",
    "    peft_config=lora_config,\n",
    "    formatting_func=formatting_func,\n",
    ")\n",
    "\n",
    "trainer.train()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "trainer.save_model('./Model')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "7e0c02a2059a451ebd0c8b8726b68003",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Loading checkpoint shards:   0%|          | 0/2 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import torch\n",
    "from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig\n",
    "\n",
    "model_id = \"./final\"\n",
    "bnb_config = BitsAndBytesConfig(\n",
    "    load_in_4bit=True,\n",
    "    bnb_4bit_quant_type=\"nf4\",\n",
    "    bnb_4bit_compute_dtype=torch.bfloat16\n",
    ")\n",
    "\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
    "model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config, device_map={\"\":0})"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}