File size: 13,789 Bytes
18283e3 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x783801332d40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x783801332dd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x783801332e60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x783801332ef0>", "_build": "<function ActorCriticPolicy._build at 0x783801332f80>", "forward": "<function ActorCriticPolicy.forward at 0x783801333010>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7838013330a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x783801333130>", "_predict": "<function ActorCriticPolicy._predict at 0x7838013331c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x783801333250>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7838013332e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x783801333370>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7838014e2380>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1714681755970594300, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoEUj32ACG6ghMAuUK6i7NgdCG7fr8XOAAAgD8AAIA/M6DqvD06BbkTeZG5D1uKtKP4jztI3rE4AACAPwAAgD/zECS+z3wsvKyVO7tyZIu5JHeVPQteZjoAAIA/AACAP5reuzzhRJq6WaAIOUQw2TPzub+6uYEduAAAgD8AAIA/Gl40PY8WSLoa7IA6EQY3NjmWzLoSO5e5AACAPwAAgD+atOm8SAOZujxzETqijM21rpWSOke6J7kAAIA/AACAP1MuhT4Nrik/9DcxvoB2Yr7HPms8al+lvQAAAAAAAAAAZgaNOuEAmbrebJW74l4yOH3kHTp9Bbw3AACAPwAAgD8zG3K8ruWauhlyJrzmN0k1NG1IOldkrbQAAIA/AACAP2a0uDwpcCW6aftGu75jDTcCzq67FVU3OgAAgD8AAIA/5tyePfaYVbpWwM46FUmJtbvop7vjuO25AACAPwAAAABm1Gy8KfRJui8wQjlvLNizQNodu7aJX7gAAIA/AACAP2YwPL7X3oo//ZVyvna2a74kLS2+7yiHuQAAAAAAAAAAZk67vI8OTboIxOm6M/eMtXaOmLvecQk6AACAPwAAgD/NqMG7XMdHuu2rjLsyaZs4zf4wu7Cz6jkAAIA/AACAP6AyGD4FGOy7tEubu7ORETp0qz690gjcOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF/Z5tFa0QeMAWyUTegDjAF0lEdAmfDyr1dxAHV9lChoBkdAYhN+hGpdbGgHTegDaAhHQJnxOyt3fQ91fZQoaAZHQGaFeERJ2+xoB03oA2gIR0CZ90zQeFL4dX2UKGgGR0Bi2o5tFa0QaAdN6ANoCEdAmfspdjXnQ3V9lChoBkdAZUml3yI552gHTegDaAhHQJn7jwRXfZV1fZQoaAZHQGNOEqtozvZoB03oA2gIR0CZ/hTz/ZM+dX2UKGgGR0Bl8IfGMn7YaAdN6ANoCEdAmgAxBZ6lcnV9lChoBkdAYT2o2GZeA2gHTegDaAhHQJoA3212JSB1fZQoaAZHQF9X7tiQT25oB03oA2gIR0CaAuagmJFcdX2UKGgGR0BeHBArxy4naAdN6ANoCEdAmgMSlSCOFXV9lChoBkdAYP6EV32VV2gHTegDaAhHQJoXV6AvtdB1fZQoaAZHQGVcSNXHR1JoB03oA2gIR0CaGJxb0OEvdX2UKGgGR0Bjj5GjKxLTaAdN6ANoCEdAmiPNqcmShnV9lChoBkdAZIWoF3Y+S2gHTegDaAhHQJo+fZOBUaR1fZQoaAZHQGV/B7/n4fxoB03oA2gIR0CaTQsOoYNzdX2UKGgGR0BkfZ0ZFXq8aAdN6ANoCEdAmk1GhM8HOnV9lChoBkdAY/Ezru6VdGgHTegDaAhHQJpTgKsuFpR1fZQoaAZHQGVOr8BMi8poB03oA2gIR0CaU9YbsF+vdX2UKGgGR0BiiOkrPMSsaAdN6ANoCEdAmlvCFTNt7HV9lChoBkdAZlDGjKxLTWgHTegDaAhHQJpgVYaHbh51fZQoaAZHQGEmxYaHbh5oB03oA2gIR0CaYMd+XqqwdX2UKGgGR0BJIol2NedDaAdNAgFoCEdAmmHUtNBWxXV9lChoBkdAXolCw8nuzGgHTegDaAhHQJpjo6aLGaR1fZQoaAZHQFmhw/gR9PVoB03oA2gIR0CaZbb2USqVdX2UKGgGR0Bh45XS0BwNaAdN6ANoCEdAmmZhoVVPvnV9lChoBkdAYH8XZXdTHmgHTegDaAhHQJpooxZdOZd1fZQoaAZHQGJQrdWQwK1oB03oA2gIR0CaaNsXSBsidX2UKGgGR0BhPceZG8VYaAdN6ANoCEdAmnuzRtxdZHV9lChoBkdAYPxXarWAgGgHTegDaAhHQJp8zaK1og51fZQoaAZHQGRbGh24d6toB03oA2gIR0CahoWUKRdQdX2UKGgGR0BkZAzDXOGCaAdN6ANoCEdAmopSGFi8WnV9lChoBkdAY5ixoIv8ImgHTegDaAhHQJqtb889wFV1fZQoaAZHQGR25Z8rqdJoB03oA2gIR0CaszposZpBdX2UKGgGR0BhEDgQ6IWQaAdN6ANoCEdAmrOOrMkhR3V9lChoBkdAZR7me18b72gHTegDaAhHQJq7CQ5myxB1fZQoaAZHQFzbFI/Z/TdoB03oA2gIR0Cav3FdLQHBdX2UKGgGR0BmrUH8jzI4aAdN6ANoCEdAmr/io86mwnV9lChoBkdAXr01ejVQRGgHTegDaAhHQJrA3x6OYIB1fZQoaAZHQGJqQpON5t5oB03oA2gIR0CawpvkRzzVdX2UKGgGR0BkAPw1BMSLaAdN6ANoCEdAmsTAW8AaN3V9lChoBkdAY4UK8cuJ12gHTegDaAhHQJrFapda+vh1fZQoaAZHQGdlY1He7+VoB03oA2gIR0Cax3CpFTegdX2UKGgGR0BeV7YTTOPeaAdN6ANoCEdAmseeaScLB3V9lChoBkdANXEU0vXbumgHS/FoCEdAmtHdOdoWYXV9lChoBkdAYU/ILgGbC2gHTegDaAhHQJrcp8lXzUZ1fZQoaAZHQGABp5mh/RVoB03oA2gIR0Ca3cig00m/dX2UKGgGR0Bs75Z+x4Y8aAdNZgNoCEdAmt3wSamXPnV9lChoBkdASzGQwK0D2mgHS/xoCEdAmuSng5zYEnV9lChoBkdAY/4fFJg9eWgHTegDaAhHQJrqv7oB7u51fZQoaAZHQGBjYs/Y8MdoB03oA2gIR0CbDcLfk3judX2UKGgGR0BfSZPdl/YraAdN6ANoCEdAmxNGHpKSPnV9lChoBkdAYMtKaoddV2gHTegDaAhHQJsTlqfvnbJ1fZQoaAZHQGR1pHRTjvNoB03oA2gIR0CbGs5RTCLudX2UKGgGR0BxSOeqaPS2aAdNdQNoCEdAmxy/znRsuXV9lChoBkdAZY7BF/hESmgHTegDaAhHQJsfGO0b9611fZQoaAZHQGUp1gYxcmloB03oA2gIR0CbH4PxhDw6dX2UKGgGR0Bh9Far3j+8aAdN6ANoCEdAmyI5BPbfxnV9lChoBkdAZGc+g13t8mgHTegDaAhHQJslDL+xW1d1fZQoaAZHQGXZAOSW7e5oB03oA2gIR0CbJyna37UHdX2UKGgGR0BiItjZtelbaAdN6ANoCEdAmydYsyzolnV9lChoBkdAZAGlUIcBEWgHTegDaAhHQJs9tGFzuF91fZQoaAZHQF4ZZEDyOJdoB03oA2gIR0CbPvyzXz19dX2UKGgGR0BjNNe4TbnHaAdN6ANoCEdAmz8nxOLzgHV9lChoBkdAYAhL+xW1dGgHTegDaAhHQJtHfBGhEjR1fZQoaAZHQGCSurZJ04loB03oA2gIR0CbTmKp1ie/dX2UKGgGR0BbWLUPQOWjaAdN6ANoCEdAm3OK4MF2V3V9lChoBkdAZEgzyBkI5mgHTegDaAhHQJt5b04BFNN1fZQoaAZHQGGpqQiiZfFoB03oA2gIR0CbecA+Y+jedX2UKGgGR0BgEBHqeK8+aAdN6ANoCEdAm4ETOTq0MXV9lChoBkdAYSbZzxPO6mgHTegDaAhHQJuC+BXjlxR1fZQoaAZHQF+jU1AJLM9oB03oA2gIR0CbhVhi9ZiedX2UKGgGR0Bj1CvFFUhnaAdN6ANoCEdAm4XA1rIo3XV9lChoBkdAbbYfq5byH2gHTZYDaAhHQJuISgBcRlJ1fZQoaAZHQGCG7tqpLmJoB03oA2gIR0CbiHieNDMNdX2UKGgGR0BksJ1xKg7HaAdN6ANoCEdAm4sT7VJ+UnV9lChoBkdAVb3uMMqjJ2gHTegDaAhHQJuNNtJnQIF1fZQoaAZHQF/hDlo11nxoB03oA2gIR0CbowFvAGjcdX2UKGgGR0Bg02Bas6q9aAdN6ANoCEdAm6Q8jeKsMnV9lChoBkdAYPXnezlcQmgHTegDaAhHQJukaR3eN1h1fZQoaAZHQGTqSv9tMwloB03oA2gIR0CbrHEPDpC8dX2UKGgGR0BggufEn9ehaAdN6ANoCEdAm7ODzVc2SHV9lChoBkdAb1JYZl4C62gHTV4CaAhHQJu3xsbedkJ1fZQoaAZHQGKZ9Jrcj7hoB03oA2gIR0Cb2IpzcRDkdX2UKGgGR0Btj6cXm/34aAdNaAFoCEdAm9lX752yLXV9lChoBkdAZX6HsTnJT2gHTegDaAhHQJveMiTt9hJ1fZQoaAZHQGUwYIKMNttoB03oA2gIR0Cb3oQAMlTndX2UKGgGR0Btkk/6fra/aAdNrQFoCEdAm96jjrAxjHV9lChoBkdAYTRjwQUYbmgHTegDaAhHQJvlW5jH4oJ1fZQoaAZHQF2cfjjrAxloB03oA2gIR0Cb50MDOkckdX2UKGgGR0Bj+N2NedCmaAdN6ANoCEdAm+lprpJPInV9lChoBkdAY3TJlrdnCmgHTegDaAhHQJvp0FcIJJJ1fZQoaAZHQG+A+bd8ArBoB029AWgIR0Cb7DdDIBBBdX2UKGgGR0Be/aJ2t+1CaAdN6ANoCEdAm+yCMglniHV9lChoBkdAcGMN8VpKz2gHTUACaAhHQJvuzIjnmq51fZQoaAZHQGS2rzoUzsRoB03oA2gIR0Cb7v7qIJqqdX2UKGgGR0BcyrAHmig1aAdN6ANoCEdAm/DcwpON53V9lChoBkdAQLTyQPqcE2gHS/poCEdAm/b2k30f5nV9lChoBkdAYLJhz/6wdWgHTegDaAhHQJwIjGrCFbp1fZQoaAZHQHDN50W/JvJoB00iAmgIR0CcFLYwIt17dX2UKGgGR0BlbPP7el9CaAdN6ANoCEdAnB1OxKQJX3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |