File size: 1,905 Bytes
be2789b 8c87364 be2789b 8c87364 be2789b 8c87364 be2789b 8c87364 be2789b 8c87364 be2789b 8c87364 be2789b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: apache-2.0
base_model: distilroberta-base
tags:
- text-classification
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: iass-distilroberta-base-mrpc-glue-iassolutions
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: datasetX
type: glue
config: mrpc
split: validation
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.8235294117647058
- name: F1
type: f1
value: 0.8714285714285714
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# iass-distilroberta-base-mrpc-glue-iassolutions
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the datasetX dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4363
- Accuracy: 0.8235
- F1: 0.8714
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.5412 | 1.09 | 500 | 0.4363 | 0.8235 | 0.8714 |
| 0.372 | 2.18 | 1000 | 0.7459 | 0.8235 | 0.8710 |
### Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
|