|
--- |
|
license: other |
|
base_model: google/mobilenet_v2_1.0_224 |
|
tags: |
|
- pytoroch |
|
- MobileNetV2ForImageClassification |
|
- food-classification |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- recall |
|
- precision |
|
- f1 |
|
model-index: |
|
- name: MobileNet-V2-food |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# MobileNet-V2-food |
|
|
|
This model is a fine-tuned version of [google/mobilenet_v2_1.0_224](https://huggingface.co/google/mobilenet_v2_1.0_224) on the ItsNotRohit/Food121-224 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6890 |
|
- Accuracy: 0.5793 |
|
- Recall: 0.5793 |
|
- Precision: 0.6006 |
|
- F1: 0.5769 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 128 |
|
- seed: 20329 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- training_steps: 20000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 2.9653 | 0.33 | 2000 | 2.7802 | 0.3438 | 0.3438 | 0.3932 | 0.3105 | |
|
| 2.3854 | 0.66 | 4000 | 2.3105 | 0.4440 | 0.4440 | 0.4979 | 0.4336 | |
|
| 2.1576 | 0.99 | 6000 | 2.0508 | 0.4958 | 0.4958 | 0.5263 | 0.4837 | |
|
| 1.9767 | 1.32 | 8000 | 1.9860 | 0.5086 | 0.5086 | 0.5504 | 0.4956 | |
|
| 1.9215 | 1.65 | 10000 | 1.8312 | 0.5462 | 0.5462 | 0.5815 | 0.5390 | |
|
| 1.782 | 1.98 | 12000 | 1.8554 | 0.5441 | 0.5441 | 0.5864 | 0.5431 | |
|
| 1.7755 | 2.31 | 14000 | 1.9241 | 0.5308 | 0.5308 | 0.5841 | 0.5272 | |
|
| 1.7006 | 2.64 | 16000 | 1.8625 | 0.5451 | 0.5451 | 0.6004 | 0.5466 | |
|
| 1.7289 | 2.98 | 18000 | 1.8560 | 0.5432 | 0.5432 | 0.5940 | 0.5395 | |
|
| 1.7296 | 3.31 | 20000 | 1.6890 | 0.5793 | 0.5793 | 0.6006 | 0.5769 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|