File size: 12,164 Bytes
57db94b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
try:
import torch
import torch.nn as nn
except:
pass
try:
import torchvision as tv
import torchvision.transforms as T
import torchvision.transforms.functional as F
except:
pass
try:
import pytorch_lightning as pl
except:
pass
try:
import torchmetrics
import lpips
except:
from argparse import Namespace
torchmetrics = Namespace(Metric=object)
try:
import wandb
except:
pass
try:
import kornia
except:
pass
try:
import detectron2
from detectron2 import model_zoo as _
from detectron2 import engine as _
from detectron2 import config as _
from detectron2 import data as _
from detectron2.utils import visualizer as _
except:
pass
try:
from nvidia import dali
from nvidia.dali.plugin import pytorch as _
except:
pass
try:
import cupy
except:
pass
try:
import skimage
from skimage import measure as _
from skimage import color as _
from skimage import segmentation as _
from skimage import filters as _
from scipy.spatial.transform import Rotation
except:
pass
# from pytorch_msssim import ssim as calc_ssim
import math
from twodee_v0 import *
from PIL import Image
# from torchmetrics.functional import structural_similarity_index_measure as calc_ssim
#################### UTILITIES ####################
try:
# @cupy.memoize(for_each_device=True)
def cupy_launch(func, kernel):
return cupy.cuda.compile_with_cache(kernel).get_function(func)
except:
cupy_launch = lambda func,kernel: None
def reset_parameters(model):
for layer in model.children():
if hasattr(layer, 'reset_parameters'):
layer.reset_parameters()
return model
def channel_squeeze(x, dim=1):
a = x.shape[:dim]
b = x.shape[dim+2:]
return x.reshape(*a, -1, *b)
def channel_unsqueeze(x, shape, dim=1):
a = x.shape[:dim]
b = x.shape[dim+1:]
return x.reshape(*a, *shape, *b)
def default_collate(items, device=None):
return to(dict(torch.utils.data.dataloader.default_collate(items)), device)
def to(x, device):
if device is None:
return x
if issubclass(x.__class__, dict):
return dict({
k: v.to(device) if isinstance(v, torch.Tensor) else v
for k,v in x.items()
})
if isinstance(x, torch.Tensor):
return x.to(device)
if isinstance(x, np.ndarray):
return torch.tensor(x).to(device)
assert 0, 'data not understood'
#################### LOSSES + METRICS ####################
class SSIMMetric(torchmetrics.Metric):
# torchmetrics has memory leak
def __init__(self, window_size=11, **kwargs):
super().__init__(**kwargs)
self.window_size = window_size
self.add_state('running_sum', default=torch.tensor(0.0), dist_reduce_fx='sum')
self.add_state('running_count', default=torch.tensor(0.0), dist_reduce_fx='sum')
self.idd = 0
self.transform = T.ToPILImage()
return
def update(self, preds: torch.Tensor, target: torch.Tensor):
for i in range(preds.size()[0]):
pp = self.transform(preds[i])
tt = self.transform(target[i])
# if (self.idd % 500 == 0):
# pp.save('/home/jiaming/eccvsample' + '/eccvP{}.png'.format(self.idd/500))
# tt.save('/home/jiaming/eccvsample' + '/eccvT{}.png'.format(self.idd/500))
# pp = Image.open('/home/jiaming/eccvsample' + '/eccvP{}.png'.format(self.idd))
# tt = Image.open('/home/jiaming/eccvsample' + '/eccvT{}.png'.format(self.idd))
self.idd += 1
# ppnp = np.array(pp)
# ttnp = np.array(tt)
# ppten = torch.tensor(ppnp).permute(2,0,1)
# ttten = torch.tensor(ttnp).permute(2,0,1)
# print(ppten.size())
# pp = F.pil_to_tensor(pp)
# tt = F.pil_to_tensor(tt)
ssss = calc_ssim(pp, tt)
# print(ssss)
self.running_sum += ssss
# print(preds[i])
# print(target[i])
# print(preds.size())
# print(target.size())
# ssss = calc_ssim(preds, target, size_average=False, data_range=1.0)
self.running_count += preds.size()[0]
# ans = kornia.metrics.ssim(target, preds, self.window_size).mean((1,2,3))
# self.running_sum += ans.sum()
# self.running_count += len(ans)
return
def compute(self):
return self.running_sum.float() / self.running_count
class SSIMMetricCPU(torchmetrics.Metric):
full_state_update=False
def __init__(self, window_size=11, **kwargs):
super().__init__(**kwargs)
self.window_size = window_size
self.add_state('running_sum', default=torch.tensor(0.0), dist_reduce_fx='sum')
self.add_state('running_count', default=torch.tensor(0.0), dist_reduce_fx='sum')
return
def update(self, preds: torch.Tensor, target: torch.Tensor):
ans = kornia.metrics.ssim(target, preds, self.window_size).mean((1,2,3))
self.running_sum += ans.sum()
self.running_count += len(ans)
# for idx in range(preds.size()[0]):
# save_image(preds[idx], '/home/jiaming/eccvsample' + '/eccvP{}.png'.format(self.i))
# save_image(target[idx], '/home/jiaming/eccvsample' + '/eccvT{}.png'.format(self.i))
# self.i += 1
# ans = calc_ssim(
# preds,
# target,
# size_average=False,
# data_range=1
# )for p,t in zip(preds, target)
# print(ans)
# skimage.metrics.structural_similarity(
# p.permute(1,2,0).cpu().numpy(),
# t.permute(1,2,0).cpu().numpy(),
# multichannel=True,
# gaussian=True,
# # data_range=255,
# )
#
# self.running_sum += sum(ans)
# self.running_count += len(ans)
return
def compute(self):
return self.running_sum / self.running_count
class PSNRMetric(torchmetrics.Metric):
# torchmetrics averages samples before taking log
def __init__(self, data_range=1.0, **kwargs):
super().__init__(**kwargs)
self.data_range = torch.tensor(data_range)
self.add_state('running_sum', default=torch.tensor(0.0), dist_reduce_fx='sum')
self.add_state('running_count', default=torch.tensor(0.0), dist_reduce_fx='sum')
return
def update(self, preds: torch.Tensor, target: torch.Tensor):
ans = -10 * torch.log10( (target-preds).pow(2).mean((1,2,3)) )
self.running_sum += 20*torch.log10(self.data_range) + ans.sum()
self.running_count += len(ans)
return
def compute(self):
return self.running_sum.float() / self.running_count
class PSNRMetricCPU(torchmetrics.Metric):
full_state_update=False
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.add_state('running_sum', default=torch.tensor(0.0), dist_reduce_fx='sum')
self.add_state('running_count', default=torch.tensor(0.0), dist_reduce_fx='sum')
return
def update(self, preds: torch.Tensor, target: torch.Tensor):
ans = [
skimage.metrics.peak_signal_noise_ratio(
p.permute(1,2,0).cpu().numpy(),
t.permute(1,2,0).cpu().numpy(),
# data_range=255,
)
for p,t in zip(preds, target)
]
self.running_sum += sum(ans)
self.running_count += len(ans)
return
def compute(self):
return self.running_sum / self.running_count
class LPIPSMetric(torchmetrics.Metric):
full_state_update=False
def __init__(self, net_type='alex', **kwargs):
super().__init__(**kwargs)
self.net_type = net_type
assert self.net_type in ['alex', 'vgg', 'squeeze']
self.model = lpips.LPIPS(net=self.net_type)
self.add_state('running_sum', default=torch.tensor(0.0), dist_reduce_fx='sum')
self.add_state('running_count', default=torch.tensor(0.0), dist_reduce_fx='sum')
return
def update(self, preds: torch.Tensor, target: torch.Tensor):
if preds.requires_grad:
ans = self.model(preds, target).mean((1,2,3))
else:
with torch.no_grad():
ans = self.model(preds, target).mean((1,2,3))
self.running_sum += ans.sum()
self.running_count += len(ans)
return
def compute(self):
return self.running_sum.float() / self.running_count
class LPIPSLoss(nn.Module):
def __init__(self, net_type='alex', **kwargs):
super().__init__()
self.net_type = net_type
assert self.net_type in ['alex', 'vgg', 'squeeze']
self.model = lpips.LPIPS(net=self.net_type, **kwargs)
return
def forward(self, preds: torch.Tensor, target: torch.Tensor):
ans = self.model(preds, target).mean((1,2,3))
return ans
class LaplacianPyramidLoss(nn.Module):
def __init__(self, n_levels=3, colorspace=None, mode='l1'):
super().__init__()
self.n_levels = n_levels
self.colorspace = colorspace
self.mode = mode
assert self.mode in ['l1', 'l2']
return
def forward(self, preds, target, force_levels=None, force_mode=None):
if self.colorspace=='lab':
preds = kornia.color.rgb_to_lab(preds.float())
target = kornia.color.rgb_to_lab(target.float())
lvls = self.n_levels if force_levels==None else force_levels
preds = kornia.geometry.transform.build_pyramid(preds, lvls)
target = kornia.geometry.transform.build_pyramid(target, lvls)
mode = self.mode if force_mode==None else force_mode
if mode=='l1':
ans = torch.stack([
(p-t).abs().mean((1,2,3))
for p,t in zip(preds,target)
]).mean(0)
elif mode=='l2':
ans = torch.stack([
(p-t).norm(dim=1, keepdim=True).mean((1,2,3))
for p,t in zip(preds,target)
]).mean(0)
else:
assert 0
return ans
def make_grid(tensor, nrow=8, padding=2):
"""
Given a 4D mini-batch Tensor of shape (B x C x H x W),
or a list of images all of the same size,
makes a grid of images
"""
tensorlist = None
if isinstance(tensor, list):
tensorlist = tensor
numImages = len(tensorlist)
size = torch.Size(torch.Size([long(numImages)]) + tensorlist[0].size())
tensor = tensorlist[0].new(size)
for i in range(numImages):
tensor[i].copy_(tensorlist[i])
if tensor.dim() == 2: # single image H x W
tensor = tensor.view(1, tensor.size(0), tensor.size(1))
if tensor.dim() == 3: # single image
if tensor.size(0) == 1:
tensor = torch.cat((tensor, tensor, tensor), 0)
return tensor
if tensor.dim() == 4 and tensor.size(1) == 1: # single-channel images
tensor = torch.cat((tensor, tensor, tensor), 1)
# make the mini-batch of images into a grid
nmaps = tensor.size(0)
xmaps = min(nrow, nmaps)
ymaps = int(math.ceil(nmaps / xmaps))
height, width = int(tensor.size(2) + padding), int(tensor.size(3) + padding)
grid = tensor.new(3, height * ymaps, width * xmaps).fill_(tensor.max())
k = 0
for y in range(ymaps):
for x in range(xmaps):
if k >= nmaps:
break
grid.narrow(1, y*height+1+padding//2,height-padding)\
.narrow(2, x*width+1+padding//2, width-padding)\
.copy_(tensor[k])
k = k + 1
return grid
def save_image(tensor, filename, nrow=8, padding=2):
"""
Saves a given Tensor into an image file.
If given a mini-batch tensor, will save the tensor as a grid of images.
"""
tensor = tensor.cpu()
grid = make_grid(tensor, nrow=nrow, padding=padding)
ndarr = grid.mul(0.5).add(0.5).mul(255).byte().transpose(0,2).transpose(0,1).numpy()
im = Image.fromarray(ndarr)
im.save(filename)
|