File size: 7,646 Bytes
57db94b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

import torchmetrics
import sketchers_v1 as usketchers
from pytorch_v0 import *
import torch

############### DISTANCE TRANSFORM ###############

# img tensor: (bs,h,w) or (bs,1,h,w)
# returns same shape
# expects white lines, black whitespace
# defaults to diameter if empty image
_batch_edt_kernel = ('kernel_dt', '''
    extern "C" __global__ void kernel_dt(
        const int bs,
        const int h,
        const int w,
        const float diam2,
        float* data,
        float* output
    ) {
        int idx = blockIdx.x * blockDim.x + threadIdx.x;
        if (idx >= bs*h*w) {
            return;
        }
        int pb = idx / (h*w);
        int pi = (idx - h*w*pb) / w;
        int pj = (idx - h*w*pb - w*pi);

        float cost;
        float mincost = diam2;
        for (int j = 0; j < w; j++) {
            cost = data[h*w*pb + w*pi + j] + (pj-j)*(pj-j);
            if (cost < mincost) {
                mincost = cost;
            }
        }
        output[idx] = mincost;
        return;
    }
''')
_batch_edt = None
def batch_edt(img, block=1024):
    # must initialize cuda/cupy after forking
    # global _batch_edt
    # if _batch_edt is None:
    #     _batch_edt = cupy_launch(*_batch_edt_kernel)

    # bookkeeppingg
    if len(img.shape)==4:
        assert img.shape[1]==1
        img = img.squeeze(1)
        expand = True
    else:
        expand = False
    bs,h,w = img.shape
    diam2 = h**2 + w**2
    odtype = img.dtype
    grid = (img.nelement()+block-1) // block

    # cupy implementation

    sums = img.sum(dim=(1,2))
    ans = torch.tensor(np.stack([
        scipy.ndimage.morphology.distance_transform_edt(i)
        if s!=0 else  # change scipy behavior for empty image
        np.ones_like(i) * np.sqrt(diam2)
        for i,s in zip(1-img, sums)
    ]), dtype=odtype)

    if expand:
        ans = ans.unsqueeze(1)
    return ans


############### DERIVED DISTANCES ###############

# input: (bs,h,w) or (bs,1,h,w)
# returns: (bs,)
# normalized s.t. metric is same across proportional image scales

# average of two asymmetric distances
# normalized by diameter and area
def batch_chamfer_distance(gt, pred, block=1024, return_more=False):
    t = batch_chamfer_distance_t(gt, pred, block=block)
    p = batch_chamfer_distance_p(gt, pred, block=block)
    cd = (t + p) / 2
    return cd
def batch_chamfer_distance_t(gt, pred, block=1024, return_more=False):
    assert gt.device==pred.device and gt.shape==pred.shape
    bs,h,w = gt.shape[0], gt.shape[-2], gt.shape[-1]
    dpred = batch_edt(pred, block=block)
    cd = (gt*dpred).float().mean((-2,-1)) / np.sqrt(h**2+w**2)
    if len(cd.shape)==2:
        assert cd.shape[1]==1
        cd = cd.squeeze(1)
    return cd
def batch_chamfer_distance_p(gt, pred, block=1024, return_more=False):
    assert gt.device==pred.device and gt.shape==pred.shape
    bs,h,w = gt.shape[0], gt.shape[-2], gt.shape[-1]
    dgt = batch_edt(gt, block=block)
    cd = (pred*dgt).float().mean((-2,-1)) / np.sqrt(h**2+w**2)
    if len(cd.shape)==2:
        assert cd.shape[1]==1
        cd = cd.squeeze(1)
    return cd

# normalized by diameter
# always between [0,1]
def batch_hausdorff_distance(gt, pred, block=1024, return_more=False):
    assert gt.device==pred.device and gt.shape==pred.shape
    bs,h,w = gt.shape[0], gt.shape[-2], gt.shape[-1]
    dgt = batch_edt(gt, block=block)
    dpred = batch_edt(pred, block=block)
    hd = torch.stack([
        (dgt*pred).amax(dim=(-2,-1)),
        (dpred*gt).amax(dim=(-2,-1)),
    ]).amax(dim=0).float() / np.sqrt(h**2+w**2)
    if len(hd.shape)==2:
        assert hd.shape[1]==1
        hd = hd.squeeze(1)
    return hd


############### TORCHMETRICS ###############

class ChamferDistance2dMetric(torchmetrics.Metric):
    full_state_update=False
    def __init__(
            self, block=1024, convert_dog=True,
            t=2.0, sigma=1.0, k=1.6, epsilon=0.01, kernel_factor=4, clip=False,
            **kwargs,
        ):
        super().__init__(**kwargs)
        self.block = block
        self.convert_dog = convert_dog
        self.dog_params = {
            't': t, 'sigma': sigma, 'k': k, 'epsilon': epsilon,
            'kernel_factor': kernel_factor, 'clip': clip,
        }
        self.add_state('running_sum', default=torch.tensor(0.0), dist_reduce_fx='sum')
        self.add_state('running_count', default=torch.tensor(0.0), dist_reduce_fx='sum')
        return
    def update(self, preds: torch.Tensor, target: torch.Tensor):
        if self.convert_dog:
            preds = (usketchers.batch_dog(preds, **self.dog_params)>0.5).float()
            target = (usketchers.batch_dog(target, **self.dog_params)>0.5).float()
        dist = batch_chamfer_distance(target, preds, block=self.block)
        # self.running_sum += dist.sum()
        # self.running_count += 1
        # print(dist.sum().item())
        return dist.sum().item()

    def calc(self, preds: torch.Tensor, target: torch.Tensor):
        if self.convert_dog:
            preds = (usketchers.batch_dog(preds, **self.dog_params) > 0.5).float()
            target = (usketchers.batch_dog(target, **self.dog_params) > 0.5).float()
        dist = batch_chamfer_distance(target, preds, block=self.block)
        # self.running_sum += dist.sum()
        # self.running_count += 1
        # print(dist.sum().item())
        return dist.sum().item()

    def compute(self):
        return self.running_sum.float() / self.running_count

class ChamferDistance2dTMetric(ChamferDistance2dMetric):
    def update(self, preds: torch.Tensor, target: torch.Tensor):
        if self.convert_dog:
            preds = (usketchers.batch_dog(preds, **self.dog_params)>0.5).float()
            target = (usketchers.batch_dog(target, **self.dog_params)>0.5).float()
        dist = batch_chamfer_distance_t(target, preds, block=self.block)
        self.running_sum += dist.sum()
        self.running_count += len(dist)
        return dist.sum().item()

class ChamferDistance2dPMetric(ChamferDistance2dMetric):
    def update(self, preds: torch.Tensor, target: torch.Tensor):
        if self.convert_dog:
            preds = (usketchers.batch_dog(preds, **self.dog_params)>0.5).float()
            target = (usketchers.batch_dog(target, **self.dog_params)>0.5).float()
        dist = batch_chamfer_distance_p(target, preds, block=self.block)
        self.running_sum += dist.sum()
        self.running_count += len(dist)
        return dist.sum().item()

class HausdorffDistance2dMetric(torchmetrics.Metric):
    def __init__(
            self, block=1024, convert_dog=True,
            t=2.0, sigma=1.0, k=1.6, epsilon=0.01, kernel_factor=4, clip=False,
            **kwargs,
        ):
        super().__init__(**kwargs)
        self.block = block
        self.convert_dog = convert_dog
        self.dog_params = {
            't': t, 'sigma': sigma, 'k': k, 'epsilon': epsilon,
            'kernel_factor': kernel_factor, 'clip': clip,
        }
        self.add_state('running_sum', default=torch.tensor(0.0), dist_reduce_fx='sum')
        self.add_state('running_count', default=torch.tensor(0.0), dist_reduce_fx='sum')
        return
    def update(self, preds: torch.Tensor, target: torch.Tensor):
        if self.convert_dog:
            preds = (usketchers.batch_dog(preds, **self.dog_params)>0.5).float()
            target = (usketchers.batch_dog(target, **self.dog_params)>0.5).float()
        dist = batch_hausdorff_distance(target, preds, block=self.block)
        self.running_sum += dist.sum()
        self.running_count += len(dist)
        return
    def compute(self):
        return self.running_sum.float() / self.running_count