File size: 3,037 Bytes
443dd28 cba4c98 443dd28 cba4c98 443dd28 cba4c98 9f0d310 cba4c98 bba9145 cba4c98 9f0d310 cba4c98 9f0d310 cba4c98 443dd28 3cf8c5c 443dd28 cba4c98 443dd28 9f0d310 443dd28 cba4c98 443dd28 cba4c98 443dd28 219c4e6 443dd28 219c4e6 443dd28 cba4c98 443dd28 3cf8c5c 443dd28 cba4c98 443dd28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
import pandas as pd
import numpy as np
import onnxruntime as ort
import os
from tqdm import tqdm
import timm
import torchvision.transforms as T
from PIL import Image
import torch
def is_gpu_available():
"""Check if the python package `onnxruntime-gpu` is installed."""
return torch.cuda.is_available()
class PytorchWorker:
"""Run inference using ONNX runtime."""
def __init__(self, model_path: str, model_name: str, number_of_categories: int = 1604):
def _load_model(model_name, model_path):
print("Setting up Pytorch Model")
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using devide: {self.device}")
model = timm.create_model(model_name, num_classes=number_of_categories, pretrained=False)
# if not torch.cuda.is_available():
# model_ckpt = torch.load(model_path, map_location=torch.device("cpu"))
# else:
# model_ckpt = torch.load(model_path)
model_ckpt = torch.load(model_path, map_location=self.device)
model.load_state_dict(model_ckpt)
return model.to(self.device).eval()
self.model = _load_model(model_name, model_path)
self.transforms = T.Compose([T.Resize((299, 299)),
T.ToTensor(),
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
def predict_image(self, image: np.ndarray) -> list():
"""Run inference using ONNX runtime.
:param image: Input image as numpy array.
:return: A list with logits and confidences.
"""
logits = self.model(self.transforms(image).unsqueeze(0).to(self.device))
return logits.tolist()
def make_submission(test_metadata, model_path, model_name, output_csv_path="./submission.csv", images_root_path="/tmp/data/private_testset"):
"""Make submission with given """
model = PytorchWorker(model_path, model_name)
predictions = []
for _, row in tqdm(test_metadata.iterrows(), total=len(test_metadata)):
image_path = os.path.join(images_root_path, row.image_path)
test_image = Image.open(image_path).convert("RGB")
logits = model.predict_image(test_image)
predictions.append(np.argmax(logits))
test_metadata["class_id"] = predictions
user_pred_df = test_metadata.drop_duplicates("observation_id", keep="first")
user_pred_df[["observation_id", "class_id"]].to_csv(output_csv_path, index=None)
if __name__ == "__main__":
import zipfile
with zipfile.ZipFile("/tmp/data/private_testset.zip", 'r') as zip_ref:
zip_ref.extractall("/tmp/data")
MODEL_PATH = "pytorch_model.bin"
MODEL_NAME = "tf_efficientnet_b1.ap_in1k"
metadata_file_path = "./FungiCLEF2024_TestMetadata.csv"
test_metadata = pd.read_csv(metadata_file_path)
make_submission(
test_metadata=test_metadata,
model_path=MODEL_PATH,
model_name=MODEL_NAME
)
|