File size: 3,037 Bytes
443dd28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cba4c98
443dd28
cba4c98
443dd28
cba4c98
9f0d310
 
cba4c98
 
 
bba9145
 
 
 
cba4c98
9f0d310
cba4c98
 
9f0d310
cba4c98
 
443dd28
3cf8c5c
443dd28
 
 
cba4c98
443dd28
 
 
 
 
 
 
9f0d310
443dd28
 
 
 
cba4c98
443dd28
 
cba4c98
443dd28
 
 
 
 
 
 
 
219c4e6
443dd28
219c4e6
443dd28
 
 
 
 
 
 
 
 
 
 
 
 
 
cba4c98
 
443dd28
 
3cf8c5c
443dd28
 
 
cba4c98
 
443dd28
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import pandas as pd
import numpy as np
import onnxruntime as ort
import os
from tqdm import tqdm
import timm
import torchvision.transforms as T
from PIL import Image
import torch

def is_gpu_available():
    """Check if the python package `onnxruntime-gpu` is installed."""
    return torch.cuda.is_available()


class PytorchWorker:
    """Run inference using ONNX runtime."""

    def __init__(self, model_path: str, model_name: str, number_of_categories: int = 1604):

        def _load_model(model_name, model_path):

            print("Setting up Pytorch Model")
            self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
            print(f"Using devide: {self.device}")

            model = timm.create_model(model_name, num_classes=number_of_categories, pretrained=False)

            # if not torch.cuda.is_available():
            #     model_ckpt = torch.load(model_path, map_location=torch.device("cpu"))
            # else:
            #     model_ckpt = torch.load(model_path)

            model_ckpt = torch.load(model_path, map_location=self.device)
            model.load_state_dict(model_ckpt)

            return model.to(self.device).eval()

        self.model = _load_model(model_name, model_path)

        self.transforms = T.Compose([T.Resize((299, 299)),
                                     T.ToTensor(),
                                     T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])


    def predict_image(self, image: np.ndarray) -> list():
        """Run inference using ONNX runtime.

        :param image: Input image as numpy array.
        :return: A list with logits and confidences.
        """

        logits = self.model(self.transforms(image).unsqueeze(0).to(self.device))

        return logits.tolist()


def make_submission(test_metadata, model_path, model_name, output_csv_path="./submission.csv", images_root_path="/tmp/data/private_testset"):
    """Make submission with given """

    model = PytorchWorker(model_path, model_name)

    predictions = []

    for _, row in tqdm(test_metadata.iterrows(), total=len(test_metadata)):
        image_path = os.path.join(images_root_path, row.image_path)

        test_image = Image.open(image_path).convert("RGB")

        logits = model.predict_image(test_image)

        predictions.append(np.argmax(logits))

    test_metadata["class_id"] = predictions

    user_pred_df = test_metadata.drop_duplicates("observation_id", keep="first")
    user_pred_df[["observation_id", "class_id"]].to_csv(output_csv_path, index=None)


if __name__ == "__main__":

    import zipfile

    with zipfile.ZipFile("/tmp/data/private_testset.zip", 'r') as zip_ref:
        zip_ref.extractall("/tmp/data")

    MODEL_PATH = "pytorch_model.bin"
    MODEL_NAME = "tf_efficientnet_b1.ap_in1k"

    metadata_file_path = "./FungiCLEF2024_TestMetadata.csv"
    test_metadata = pd.read_csv(metadata_file_path)

    make_submission(
        test_metadata=test_metadata,
        model_path=MODEL_PATH,
        model_name=MODEL_NAME
    )