File size: 1,577 Bytes
9063905 5e765ab 9063905 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
from typing import Dict
from pyannote.audio import Pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import torch
SAMPLE_RATE = 16000
class EndpointHandler():
def __init__(self, path=""):
# load the model
self.pipeline = Pipeline.from_pretrained("philschmid/pyannote-speaker-diarization-endpoint")
def __call__(self, data: Dict[str, bytes]) -> Dict[str, str]:
"""
Args:
data (:obj:):
includes the deserialized audio file as bytes
Return:
A :obj:`dict`:. base64 encoded image
"""
# process input
inputs = data.pop("inputs", data)
parameters = data.pop("parameters", None) # min_speakers=2, max_speakers=5
# prepare pynannote input
audio_nparray = ffmpeg_read(inputs, SAMPLE_RATE)
audio_tensor= torch.from_numpy(audio_nparray).unsqueeze(0)
pyannote_input = {"waveform": audio_tensor, "sample_rate": SAMPLE_RATE}
# apply pretrained pipeline
# pass inputs with all kwargs in data
if parameters is not None:
diarization = self.pipeline(pyannote_input, **parameters)
else:
diarization = self.pipeline(pyannote_input)
# postprocess the prediction
processed_diarization = [
{"label": str(label), "start": str(segment.start), "stop": str(segment.end)}
for segment, _, label in diarization.itertracks(yield_label=True)
]
return {"diarization": processed_diarization}
|