|
--- |
|
language: |
|
- de |
|
license: mit |
|
datasets: |
|
- germaner |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
widget: |
|
- text: 'Philipp ist 26 Jahre alt und lebt in Nürnberg, Deutschland. Derzeit arbeitet |
|
er als Machine Learning Engineer und Tech Lead bei Hugging Face, um künstliche |
|
Intelligenz durch Open Source und Open Science zu demokratisieren. |
|
|
|
' |
|
base_model: deepset/gbert-base |
|
model-index: |
|
- name: gbert-base-germaner |
|
results: |
|
- task: |
|
type: token-classification |
|
name: Token Classification |
|
dataset: |
|
name: germaner |
|
type: germaner |
|
args: default |
|
metrics: |
|
- type: precision |
|
value: 0.8520523797532108 |
|
name: precision |
|
- type: recall |
|
value: 0.8754204398447607 |
|
name: recall |
|
- type: f1 |
|
value: 0.8635783563042368 |
|
name: f1 |
|
- type: accuracy |
|
value: 0.976147969774973 |
|
name: accuracy |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# gbert-base-germaner |
|
|
|
This model is a fine-tuned version of [deepset/gbert-base](https://huggingface.co/deepset/gbert-base) on the germaner dataset. |
|
It achieves the following results on the evaluation set: |
|
- precision: 0.8521 |
|
- recall: 0.8754 |
|
- f1: 0.8636 |
|
- accuracy: 0.9761 |
|
|
|
If you want to learn how to fine-tune BERT yourself using Keras and Tensorflow check out this blog post: |
|
|
|
https://www.philschmid.de/huggingface-transformers-keras-tf |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- num_train_epochs: 5 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 32 |
|
- learning_rate: 2e-05 |
|
- weight_decay_rate: 0.01 |
|
- num_warmup_steps: 0 |
|
- fp16: True |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.14.1 |
|
- Datasets 1.16.1 |
|
- Tokenizers 0.10.3 |
|
|