gbert-base-germaner / README.md
philschmid's picture
philschmid HF staff
Update README.md
98c1dc9
---
language:
- de
license: mit
widget:
- text: |
Philipp ist 26 Jahre alt und lebt in Nürnberg, Deutschland. Derzeit arbeitet er als Machine Learning Engineer und Tech Lead bei Hugging Face, um künstliche Intelligenz durch Open Source und Open Science zu demokratisieren.
datasets:
- germaner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: gbert-base-germaner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: germaner
type: germaner
args: default
metrics:
- name: precision
type: precision
value: 0.8520523797532108
- name: recall
type: recall
value: 0.8754204398447607
- name: f1
type: f1
value: 0.8635783563042368
- name: accuracy
type: accuracy
value: 0.976147969774973
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gbert-base-germaner
This model is a fine-tuned version of [deepset/gbert-base](https://huggingface.co/deepset/gbert-base) on the germaner dataset.
It achieves the following results on the evaluation set:
- precision: 0.8521
- recall: 0.8754
- f1: 0.8636
- accuracy: 0.9761
If you want to learn how to fine-tune BERT yourself using Keras and Tensorflow check out this blog post:
https://www.philschmid.de/huggingface-transformers-keras-tf
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- num_train_epochs: 5
- train_batch_size: 16
- eval_batch_size: 32
- learning_rate: 2e-05
- weight_decay_rate: 0.01
- num_warmup_steps: 0
- fp16: True
### Framework versions
- Transformers 4.14.1
- Datasets 1.16.1
- Tokenizers 0.10.3