File size: 4,320 Bytes
eb79cba
9cd9a5a
eb79cba
 
9cd9a5a
 
 
 
 
 
eb79cba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cd9a5a
eb79cba
 
 
 
 
 
 
 
 
9cd9a5a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

---
language: en
license: apache-2.0
datasets:
- squad
metrics:
- squad
---

# Model Card for ONNX Conversion of distilbert-base-cased-distilled-squad
 
# Model Details
 
## Model Description
This model is a fine-tune checkpoint of DistilBERT-base-cased, fine-tuned using (a second step of) knowledge distillation on SQuAD v1.1. 
 
- **Developed by:** Philipp Schmid
- **Shared by [Optional]:** Hugging Face
- **Model type:** Question Answering
- **Language(s) (NLP):** en
- **License:** Apache-2.0
- **Related Models:** [distilbert-base-cased-distilled-squad](https://huggingface.co/distilbert-base-cased-distilled-squad)
  - **Parent Model:** distilbert
- **Resources for more information:**
     - [Space](https://huggingface.co/spaces/krrishD/philschmid_distilbert-onnx)
     - [Blog Post](https://www.philschmid.de/convert-transformers-to-onnx)
 
# Uses
 
 
## Direct Use
 
This model can be used for question answering.
 
## Downstream Use [Optional]
 
 
More information needed.
 
 
## Out-of-Scope Use
 
 
The model should not be used to intentionally create hostile or alienating environments for people. 
 
# Bias, Risks, and Limitations
 
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
 
 
## Recommendations
 
 
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
# Training Details
 
## Training Data
 
To learn more about the SQuAD v1.1 dataset, see the associated [SQuAD v1.1 dataset card](https://huggingface.co/datasets/squad) for further details.
 
## Training Procedure
 
 
### Preprocessing
 
See the [distilbert-base-cased model card](https://huggingface.co/distilbert-base-cased) for further details.
 
### Speeds, Sizes, Times
 
 
See the [distilbert-base-cased model card](https://huggingface.co/distilbert-base-cased) for further details.
 
# Evaluation
 
 
 
## Testing Data, Factors & Metrics
 
### Testing Data
 
 
More information needed
 
### Factors
 
 
### Metrics
 
More information needed
 
## Results 
 
This model reaches a F1 score of 87.1 on the dev set (for comparison, BERT bert-base-cased version reaches a F1 score of 88.7).
 
# Model Examination
More information needed
 
# Environmental Impact
 
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
- **Hardware Type:** More information needed
- **Hours used:** More information needed
- **Cloud Provider:** More information needed
- **Compute Region:** More information needed
- **Carbon Emitted:** More information needed
 
# Technical Specifications [optional]
 
## Model Architecture and Objective
 
More information needed
 
## Compute Infrastructure
 
More information needed
 
### Hardware
 
More information needed
 
### Software
 
More information needed
 
# Citation
 
 
**BibTeX:**
 
More information needed
 
**APA:**
 
More information needed
 
# Glossary [optional]
 
1. What is ONNX?
The ONNX (Open Neural Network eXchange) is an open standard and format to represent machine learning models. ONNX defines a common set of operators and a common file format to represent deep learning models in a wide variety of frameworks, including PyTorch and TensorFlow.
 
 
# More Information [optional]
 
More information needed
 
# Model Card Authors [optional]
 
Philipp Schmid  in collaboration with Ezi Ozoani and the Hugging Face team.
 
# Model Card Contact
 
More information needed
 
# How to Get Started with the Model
 
Use the code below to get started with the model.
 
<details>
<summary> Click to expand </summary>

```python
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
 
tokenizer = AutoTokenizer.from_pretrained("philschmid/distilbert-onnx")
 
model = AutoModelForQuestionAnswering.from_pretrained("philschmid/distilbert-onnx")
 
 ```
</details>