philldevcoder's picture
Update README.md
418e5e5 verified

Training Details

Training Data

  • Open-access chest X-ray datasets (e.g., NIH ChestX-ray14, CheXpert).
  • Data preprocessing: normalization, resizing, augmentation.

Training Procedure

  • Stage 1: EfficientNet-B0 for coarse classification (normal vs abnormal).
  • Stage 2: EfficientNet-B2 for expert-level multi-label disease classification.
  • Grad-CAM integrated for visual interpretability.

Training Hyperparameters

  • Mixed precision (fp16)
  • Optimizer: AdamW
  • Learning rate scheduler: CosineAnnealing
  • Loss: Weighted BCE with logits

Evaluation

Testing Data

  • Evaluated on public benchmark datasets (CheXpert, NIH ChestX-ray14).

Metrics

  • AUROC (per-class and mean)
  • F1-score
  • Sensitivity/Specificity

Results

  • Mean AUROC ≈ 0.85–0.90 (depending on dataset and task)
  • Grad-CAM heatmaps align with radiologically relevant regions

Model Examination

  • Grad-CAM visualizations available for each prediction
  • Two-stage pipeline mirrors clinical workflow

Environmental Impact

  • Hardware Type: NVIDIA Tesla V100 (cloud GPU)
  • Hours used: ~60 GPU hours
  • Cloud Provider: Google Cloud
  • Compute Region: US-central
  • Carbon Emitted: Estimated ~25 kg CO2eq

Technical Specifications

Model Architecture

  • Stage 1: EfficientNet-B0
  • Stage 2: EfficientNet-B2
  • Hierarchical classification pipeline
  • Grad-CAM interpretability module

Compute Infrastructure

  • Hardware: NVIDIA V100 (16GB)
  • Software: PyTorch, Hugging Face Transformers, CUDA 11.8

Citation

BibTeX

@article{indabax2025cxrnet,
  title={Hierarchical CXR-Net: A Two-Stage Framework for Efficient and Interpretable Chest X-Ray Diagnosis},
  author={Ssempeebwa, Phillip and IndabaX Uganda AI Research Lab},
  year={2025},
  journal={Digital Health Africa 2025 Poster Proceedings}
}