File size: 1,894 Bytes
c131a6e
 
e6a0f5d
c131a6e
 
 
 
 
 
 
 
 
 
 
 
 
 
e6a0f5d
c131a6e
e6a0f5d
 
c131a6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6a0f5d
c131a6e
 
 
 
 
e6a0f5d
 
 
 
 
 
 
 
 
 
c131a6e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: mit
base_model: pgarco/roberta_cm
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: roberta_cm
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta_cm

This model is a fine-tuned version of [pgarco/roberta_cm](https://huggingface.co/pgarco/roberta_cm) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5667
- Accuracy: 0.9377

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 132  | 0.3797          | 0.9210   |
| No log        | 2.0   | 264  | 0.2178          | 0.9271   |
| No log        | 3.0   | 396  | 0.4045          | 0.9119   |
| 0.1408        | 4.0   | 528  | 0.4650          | 0.9271   |
| 0.1408        | 5.0   | 660  | 0.6946          | 0.9073   |
| 0.1408        | 6.0   | 792  | 0.5308          | 0.9347   |
| 0.1408        | 7.0   | 924  | 0.6309          | 0.9210   |
| 0.01          | 8.0   | 1056 | 0.5978          | 0.9331   |
| 0.01          | 9.0   | 1188 | 0.5555          | 0.9377   |
| 0.01          | 10.0  | 1320 | 0.5667          | 0.9377   |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1