File size: 2,858 Bytes
ae93403
 
 
 
 
f43289b
ae93403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f43289b
ae93403
 
 
 
 
 
f43289b
 
 
 
 
 
 
ae93403
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from safetensors.torch import save_file
from safetensors.torch import safe_open
import os
import torch
import argparse
import json
from transformers import AutoModelForCausalLM

def save_model_at_once(model, save_dir):
    tensors = {k:v for k, v in model.state_dict().items()}
    path = os.path.join(save_dir, "model.safetensors")
    save_file(tensors, path)

def save_model_in_distributed_safetensor(model, save_dir, n_file=2):
    total_params = [torch.numel(model.state_dict()[k]) for k in model.state_dict()]
    params_per_gpu = float(sum(total_params) / n_file)
    params = [0]
    tensors = {}
    for i, (k, v) in enumerate(model.state_dict().items()):
        cur_params = torch.numel(model.state_dict()[k])
        params[-1] += cur_params
        tensors.update({k:v})
        if params[-1] > params_per_gpu or i == len(model.state_dict())-1:
            name = f"model{len(params)-1}.safetensors"
            path = os.path.join(save_dir, name)
            save_file(tensors, path)
            params.append(0)
            del tensors
            tensors = {}

def load_model_test(load_path, model_name="model.safetensors"):
    tensors = {}
    path = os.path.join(load_path, model_name)
    with safe_open(path, framework="pt", device=0) as f:
        for k in f.keys():
            tensors[k] = f.get_tensor(k)
        print(f.keys())
        print("Success to load.")

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_path", type=str, default=None, help="huggingface .bin file dir")
    parser.add_argument("--save_dir", type=str, default=None, help="path to save")
    parser.add_argument("--n_file", type=int, default=1, help="Whether to split weight params when saving safetensors")
    parser.add_argument("--check_load", action="store_true")
    args = parser.parse_args()
    
    model = AutoModelForCausalLM.from_pretrained(args.model_path)
    
    print("Model loaded")

    if not os.path.exists(args.save_dir):
        from pathlib import Path
        Path(args.save_dir).mkdir(parents=True, exist_ok=True)

    conf = dict(sorted(model.config.to_diff_dict().items(), key=lambda x: x[0]))
    del conf['architectures']
    del conf['model_type']
    conf['torch_dtype'] = "bfloat16"
    with open(os.path.join(args.save_dir, "config.json"), "w") as f:
        json.dump(conf, f, indent=2)

    load_path = args.save_dir
    if args.n_file == 1:
        save_model_at_once(model, args.save_dir)
        if args.check_load:
            load_model_test(load_path)
    else:
        assert args.n_file >=2
        save_model_in_distributed_safetensor(model, args.save_dir, n_file=args.n_file)
        if args.check_load:
            load_model_test(load_path, model_name="model0.safetensors")
            load_model_test(load_path, model_name=f"model{args.n_file-1}.safetensors")