File size: 4,901 Bytes
329c952
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---

license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base-finetuned-kinetics
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-kinetics-finetuned-freeway-subset
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/huangyangyu/huggingface/runs/3e8psy1e)
# videomae-base-finetuned-kinetics-finetuned-freeway-subset

This model is a fine-tuned version of [MCG-NJU/videomae-base-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-base-finetuned-kinetics) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0016
- Accuracy: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05

- train_batch_size: 5

- eval_batch_size: 5

- seed: 42

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- lr_scheduler_warmup_ratio: 0.1
- training_steps: 1800



### Training results



| Training Loss | Epoch | Step | Validation Loss | Accuracy |

|:-------------:|:-----:|:----:|:---------------:|:--------:|

| 0.6551        | 0.02  | 36   | 0.7171          | 0.5      |

| 0.6085        | 1.02  | 72   | 0.7057          | 0.5      |

| 0.5876        | 2.02  | 108  | 0.5834          | 0.75     |

| 0.5757        | 3.02  | 144  | 0.5360          | 0.7143   |

| 0.7017        | 4.02  | 180  | 0.4589          | 0.7143   |

| 0.5681        | 5.02  | 216  | 0.3667          | 0.8214   |

| 0.3418        | 6.02  | 252  | 0.2312          | 0.9286   |

| 0.6408        | 7.02  | 288  | 0.2724          | 0.8929   |

| 0.3846        | 8.02  | 324  | 0.1288          | 0.9643   |

| 0.1551        | 9.02  | 360  | 0.6198          | 0.8214   |

| 0.4879        | 10.02 | 396  | 0.3241          | 0.8571   |

| 0.0982        | 11.02 | 432  | 0.1815          | 0.9286   |

| 0.112         | 12.02 | 468  | 0.2504          | 0.9643   |

| 0.3627        | 13.02 | 504  | 0.2357          | 0.9643   |

| 0.2329        | 14.02 | 540  | 0.6101          | 0.8571   |

| 0.141         | 15.02 | 576  | 0.0218          | 1.0      |

| 0.1755        | 16.02 | 612  | 0.0791          | 0.9643   |

| 0.079         | 17.02 | 648  | 0.1167          | 0.9643   |

| 0.0859        | 18.02 | 684  | 0.0118          | 1.0      |

| 0.0131        | 19.02 | 720  | 0.0020          | 1.0      |

| 0.0014        | 20.02 | 756  | 0.0054          | 1.0      |

| 0.0008        | 21.02 | 792  | 0.0841          | 0.9286   |

| 0.0024        | 22.02 | 828  | 0.0852          | 0.9643   |

| 0.1803        | 23.02 | 864  | 0.0005          | 1.0      |

| 0.0001        | 24.02 | 900  | 0.0379          | 0.9643   |

| 0.0012        | 25.02 | 936  | 0.0705          | 0.9643   |

| 0.0018        | 26.02 | 972  | 0.0010          | 1.0      |

| 0.0007        | 27.02 | 1008 | 0.0210          | 1.0      |

| 0.0028        | 28.02 | 1044 | 0.0030          | 1.0      |

| 0.0465        | 29.02 | 1080 | 0.0005          | 1.0      |

| 0.0004        | 30.02 | 1116 | 0.0011          | 1.0      |

| 0.0016        | 31.02 | 1152 | 0.0005          | 1.0      |

| 0.0           | 32.02 | 1188 | 0.0012          | 1.0      |

| 0.0002        | 33.02 | 1224 | 0.0001          | 1.0      |

| 0.0315        | 34.02 | 1260 | 0.0027          | 1.0      |

| 0.0253        | 35.02 | 1296 | 0.0003          | 1.0      |

| 0.0011        | 36.02 | 1332 | 0.0022          | 1.0      |

| 0.0001        | 37.02 | 1368 | 0.0006          | 1.0      |

| 0.0007        | 38.02 | 1404 | 0.0120          | 1.0      |

| 0.0001        | 39.02 | 1440 | 0.1001          | 0.9643   |

| 0.0005        | 40.02 | 1476 | 0.0331          | 0.9643   |

| 0.0009        | 41.02 | 1512 | 0.0418          | 0.9643   |

| 0.0035        | 42.02 | 1548 | 0.0761          | 0.9643   |

| 0.0001        | 43.02 | 1584 | 0.0020          | 1.0      |

| 0.0001        | 44.02 | 1620 | 0.0020          | 1.0      |

| 0.0           | 45.02 | 1656 | 0.0010          | 1.0      |

| 0.0001        | 46.02 | 1692 | 0.0009          | 1.0      |

| 0.0005        | 47.02 | 1728 | 0.0012          | 1.0      |

| 0.0001        | 48.02 | 1764 | 0.0015          | 1.0      |

| 0.0002        | 49.02 | 1800 | 0.0016          | 1.0      |





### Framework versions



- Transformers 4.42.0.dev0

- Pytorch 2.1.1

- Datasets 2.19.2

- Tokenizers 0.19.1