File size: 12,407 Bytes
7eb7be0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import t5.models.mesh_transformer
import t5.data.sentencepiece_vocabulary
import mesh_tensorflow.optimize
import mesh_tensorflow.transformer.dataset
import mesh_tensorflow.transformer.learning_rate_schedules
import mesh_tensorflow.transformer.t2t_vocabulary
import mesh_tensorflow.transformer.transformer_layers
import mesh_tensorflow.transformer.utils
# Macros:
# ==============================================================================
d_ff = 2048
d_kv = 64
d_model = 512
dropout_rate = 0.1
inputs_length = 512
mean_noise_span_length = 3.0
MIXTURE_NAME = 'all_mix'
noise_density = 0.15
num_heads = 8
num_layers = 6
targets_length = 512
init_checkpoint = "gs://t5-data/pretrained_models/small/model.ckpt-1000000"
tokens_per_batch = 1048576
# Parameters for AdafactorOptimizer:
# ==============================================================================
AdafactorOptimizer.beta1 = 0.0
AdafactorOptimizer.clipping_threshold = 1.0
AdafactorOptimizer.decay_rate = None
AdafactorOptimizer.epsilon1 = 1e-30
AdafactorOptimizer.epsilon2 = 0.001
AdafactorOptimizer.factored = True
AdafactorOptimizer.min_dim_size_to_factor = 128
AdafactorOptimizer.multiply_by_parameter_scale = True
# Parameters for Bitransformer:
# ==============================================================================
Bitransformer.shared_embedding = True
# Parameters for denoise:
# ==============================================================================
denoise.inputs_fn = @preprocessors.noise_span_to_unique_sentinel
denoise.noise_density = %noise_density
denoise.noise_mask_fn = @preprocessors.random_spans_noise_mask
denoise.targets_fn = @preprocessors.nonnoise_span_to_unique_sentinel
# Parameters for decoder/DenseReluDense:
# ==============================================================================
decoder/DenseReluDense.dropout_rate = %dropout_rate
decoder/DenseReluDense.hidden_size = %d_ff
# Parameters for encoder/DenseReluDense:
# ==============================================================================
encoder/DenseReluDense.dropout_rate = %dropout_rate
encoder/DenseReluDense.hidden_size = %d_ff
# Parameters for decoder/EncDecAttention:
# ==============================================================================
# None.
# Parameters for get_sentencepiece_model_path:
# ==============================================================================
get_sentencepiece_model_path.mixture_or_task_name = %MIXTURE_NAME
# Parameters for get_variable_dtype:
# ==============================================================================
get_variable_dtype.activation_dtype = 'bfloat16'
# Parameters for decoder/LayerStack:
# ==============================================================================
decoder/LayerStack.dropout_rate = %dropout_rate
decoder/LayerStack.norm_epsilon = 1e-06
# Parameters for encoder/LayerStack:
# ==============================================================================
encoder/LayerStack.dropout_rate = %dropout_rate
encoder/LayerStack.norm_epsilon = 1e-06
# Parameters for learning_rate_schedule_noam:
# ==============================================================================
learning_rate_schedule_noam.linear_decay_fraction = 0.1
learning_rate_schedule_noam.multiplier = 1.0
learning_rate_schedule_noam.offset = 0
learning_rate_schedule_noam.warmup_steps = 10000
# Parameters for make_bitransformer:
# ==============================================================================
make_bitransformer.decoder_name = 'decoder'
make_bitransformer.encoder_name = 'encoder'
# Parameters for decoder/make_layer_stack:
# ==============================================================================
decoder/make_layer_stack.block_scope = True
decoder/make_layer_stack.layers = \
[@mesh_tensorflow.transformer.transformer_layers.SelfAttention,
@mesh_tensorflow.transformer.transformer_layers.EncDecAttention,
@mesh_tensorflow.transformer.transformer_layers.DenseReluDense]
decoder/make_layer_stack.num_layers = %num_layers
# Parameters for encoder/make_layer_stack:
# ==============================================================================
encoder/make_layer_stack.block_scope = True
encoder/make_layer_stack.layers = \
[@mesh_tensorflow.transformer.transformer_layers.SelfAttention,
@mesh_tensorflow.transformer.transformer_layers.DenseReluDense]
encoder/make_layer_stack.num_layers = %num_layers
# Parameters for mesh_train_dataset_fn:
# ==============================================================================
mesh_train_dataset_fn.mixture_or_task_name = %MIXTURE_NAME
# Parameters for noise_span_to_unique_sentinel:
# ==============================================================================
# None.
# Parameters for nonnoise_span_to_unique_sentinel:
# ==============================================================================
# None.
# Parameters for pack_dataset:
# ==============================================================================
# Parameters for pack_or_pad:
# ==============================================================================
# None.
# Parameters for random_spans_helper:
# ==============================================================================
random_spans_helper.extra_tokens_per_span_inputs = 1
random_spans_helper.extra_tokens_per_span_targets = 1
random_spans_helper.inputs_length = %inputs_length
random_spans_helper.mean_noise_span_length = %mean_noise_span_length
random_spans_helper.noise_density = %noise_density
# Parameters for targets_length/random_spans_helper:
# ==============================================================================
targets_length/random_spans_helper.extra_tokens_per_span_inputs = 1
targets_length/random_spans_helper.extra_tokens_per_span_targets = 1
targets_length/random_spans_helper.inputs_length = %inputs_length
targets_length/random_spans_helper.mean_noise_span_length = %mean_noise_span_length
targets_length/random_spans_helper.noise_density = %noise_density
# Parameters for random_spans_noise_mask:
# ==============================================================================
random_spans_noise_mask.mean_noise_span_length = %mean_noise_span_length
# Parameters for targets_length/random_spans_targets_length:
# ==============================================================================
# None.
# Parameters for random_spans_tokens_length:
# ==============================================================================
# None.
# Parameters for rate_num_examples:
# ==============================================================================
rate_num_examples.maximum = 1000000.0
rate_num_examples.scale = 1.0
rate_num_examples.temperature = 1.0
# Parameters for rate_unsupervised:
# ==============================================================================
rate_unsupervised.value = 710000.0
# Parameters for reduce_concat_tokens:
# ==============================================================================
reduce_concat_tokens.batch_size = 128
reduce_concat_tokens.feature_key = 'targets'
# Parameters for run:
# ==============================================================================
run.autostack = True
run.batch_size = ('tokens_per_batch', %tokens_per_batch)
run.dataset_split = 'train'
run.ensemble_inputs = None
run.eval_checkpoint_step = None
run.eval_dataset_fn = None
run.eval_summary_dir = None
run.export_path = ''
run.iterations_per_loop = 100
run.keep_checkpoint_max = None
run.layout_rules = \
'ensemble:ensemble,batch:batch,d_ff:model,heads:model,vocab:model,experts:batch'
run.learning_rate_schedule = @learning_rate_schedules.learning_rate_schedule_noam
run.mesh_shape = @mesh_tensorflow.transformer.utils.tpu_mesh_shape()
run.mode = 'train'
run.init_checkpoint = %init_checkpoint
run.model_type = 'bitransformer'
run.optimizer = @optimize.AdafactorOptimizer
run.perplexity_eval_steps = 10
run.predict_fn = None
run.save_checkpoints_steps = 2400
run.sequence_length = {'inputs': %inputs_length, 'targets': %targets_length}
run.train_dataset_fn = \
@t5.models.mesh_transformer.mesh_train_dataset_fn
run.train_steps = 1000000000
run.variable_filter = None
run.vocabulary = \
@t5.data.sentencepiece_vocabulary.SentencePieceVocabulary()
# Parameters for select_random_chunk:
# ==============================================================================
select_random_chunk.feature_key = 'targets'
select_random_chunk.max_length = 65536
# Parameters for decoder/SelfAttention:
# ==============================================================================
decoder/SelfAttention.attention_kwargs = None
decoder/SelfAttention.dropout_rate = %dropout_rate
decoder/SelfAttention.key_value_size = %d_kv
decoder/SelfAttention.num_heads = %num_heads
decoder/SelfAttention.num_memory_heads = 0
decoder/SelfAttention.relative_attention_num_buckets = 32
decoder/SelfAttention.relative_attention_type = 'bias_shared'
decoder/SelfAttention.shared_kv = False
# Parameters for encoder/SelfAttention:
# ==============================================================================
encoder/SelfAttention.attention_kwargs = None
encoder/SelfAttention.dropout_rate = %dropout_rate
encoder/SelfAttention.key_value_size = %d_kv
encoder/SelfAttention.num_heads = %num_heads
encoder/SelfAttention.num_memory_heads = 0
encoder/SelfAttention.relative_attention_num_buckets = 32
encoder/SelfAttention.relative_attention_type = 'bias_shared'
encoder/SelfAttention.shared_kv = False
# Parameters for SentencePieceVocabulary:
# ==============================================================================
SentencePieceVocabulary.extra_ids = 100
SentencePieceVocabulary.sentencepiece_model_file = \
@t5.models.mesh_transformer.get_sentencepiece_model_path()
# Parameters for serialize_num_microbatches:
# ==============================================================================
serialize_num_microbatches.tokens_per_microbatch_per_replica = 8192
# Parameters for split_tokens:
# ==============================================================================
split_tokens.feature_key = 'targets'
split_tokens.max_tokens_per_segment = @preprocessors.random_spans_tokens_length()
split_tokens.min_tokens_per_segment = None
# Parameters for tpu_estimator_model_fn:
# ==============================================================================
tpu_estimator_model_fn.init_checkpoint = %init_checkpoint
tpu_estimator_model_fn.outer_batch_size = 1
tpu_estimator_model_fn.tpu_summaries = False
# Parameters for tpu_mesh_shape:
# ==============================================================================
tpu_mesh_shape.ensemble_parallelism = None
tpu_mesh_shape.model_parallelism = 1
tpu_mesh_shape.tpu_topology = '8x8'
# Parameters for decoder/Unitransformer:
# ==============================================================================
decoder/Unitransformer.d_model = %d_model
decoder/Unitransformer.ensemble = None
decoder/Unitransformer.input_full_attention = False
decoder/Unitransformer.label_smoothing = 0.0
decoder/Unitransformer.loss_denominator = None
decoder/Unitransformer.loss_fn = None
decoder/Unitransformer.loss_on_targets_only = False
decoder/Unitransformer.max_length = 512
decoder/Unitransformer.positional_embedding = False
decoder/Unitransformer.shared_embedding_and_softmax_weights = True
decoder/Unitransformer.vocab_divisor = 128
decoder/Unitransformer.z_loss = 0.0001
decoder/Unitransformer.loss_denominator = 233472
# Parameters for encoder/Unitransformer:
# ==============================================================================
encoder/Unitransformer.d_model = %d_model
encoder/Unitransformer.ensemble = None
encoder/Unitransformer.input_full_attention = False
encoder/Unitransformer.label_smoothing = 0.0
encoder/Unitransformer.loss_denominator = None
encoder/Unitransformer.loss_fn = None
encoder/Unitransformer.loss_on_targets_only = False
encoder/Unitransformer.max_length = 512
encoder/Unitransformer.positional_embedding = False
encoder/Unitransformer.shared_embedding_and_softmax_weights = True
encoder/Unitransformer.vocab_divisor = 128
encoder/Unitransformer.z_loss = 0.0001
# Parameters for unsupervised:
# ==============================================================================
unsupervised.preprocessors = \
[@preprocessors.select_random_chunk,
@preprocessors.reduce_concat_tokens,
@preprocessors.split_tokens,
@preprocessors.denoise]
|