File size: 12,407 Bytes
7eb7be0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import t5.models.mesh_transformer
import t5.data.sentencepiece_vocabulary
import mesh_tensorflow.optimize
import mesh_tensorflow.transformer.dataset
import mesh_tensorflow.transformer.learning_rate_schedules
import mesh_tensorflow.transformer.t2t_vocabulary
import mesh_tensorflow.transformer.transformer_layers
import mesh_tensorflow.transformer.utils

# Macros:
# ==============================================================================
d_ff = 2048
d_kv = 64
d_model = 512
dropout_rate = 0.1
inputs_length = 512
mean_noise_span_length = 3.0
MIXTURE_NAME = 'all_mix'
noise_density = 0.15
num_heads = 8
num_layers = 6
targets_length = 512
init_checkpoint = "gs://t5-data/pretrained_models/small/model.ckpt-1000000"
tokens_per_batch = 1048576

# Parameters for AdafactorOptimizer:
# ==============================================================================
AdafactorOptimizer.beta1 = 0.0
AdafactorOptimizer.clipping_threshold = 1.0
AdafactorOptimizer.decay_rate = None
AdafactorOptimizer.epsilon1 = 1e-30
AdafactorOptimizer.epsilon2 = 0.001
AdafactorOptimizer.factored = True
AdafactorOptimizer.min_dim_size_to_factor = 128
AdafactorOptimizer.multiply_by_parameter_scale = True

# Parameters for Bitransformer:
# ==============================================================================
Bitransformer.shared_embedding = True

# Parameters for denoise:
# ==============================================================================
denoise.inputs_fn = @preprocessors.noise_span_to_unique_sentinel
denoise.noise_density = %noise_density
denoise.noise_mask_fn = @preprocessors.random_spans_noise_mask
denoise.targets_fn = @preprocessors.nonnoise_span_to_unique_sentinel

# Parameters for decoder/DenseReluDense:
# ==============================================================================
decoder/DenseReluDense.dropout_rate = %dropout_rate
decoder/DenseReluDense.hidden_size = %d_ff

# Parameters for encoder/DenseReluDense:
# ==============================================================================
encoder/DenseReluDense.dropout_rate = %dropout_rate
encoder/DenseReluDense.hidden_size = %d_ff

# Parameters for decoder/EncDecAttention:
# ==============================================================================
# None.

# Parameters for get_sentencepiece_model_path:
# ==============================================================================
get_sentencepiece_model_path.mixture_or_task_name = %MIXTURE_NAME

# Parameters for get_variable_dtype:
# ==============================================================================
get_variable_dtype.activation_dtype = 'bfloat16'

# Parameters for decoder/LayerStack:
# ==============================================================================
decoder/LayerStack.dropout_rate = %dropout_rate
decoder/LayerStack.norm_epsilon = 1e-06

# Parameters for encoder/LayerStack:
# ==============================================================================
encoder/LayerStack.dropout_rate = %dropout_rate
encoder/LayerStack.norm_epsilon = 1e-06

# Parameters for learning_rate_schedule_noam:
# ==============================================================================
learning_rate_schedule_noam.linear_decay_fraction = 0.1
learning_rate_schedule_noam.multiplier = 1.0
learning_rate_schedule_noam.offset = 0
learning_rate_schedule_noam.warmup_steps = 10000

# Parameters for make_bitransformer:
# ==============================================================================
make_bitransformer.decoder_name = 'decoder'
make_bitransformer.encoder_name = 'encoder'

# Parameters for decoder/make_layer_stack:
# ==============================================================================
decoder/make_layer_stack.block_scope = True
decoder/make_layer_stack.layers = \
    [@mesh_tensorflow.transformer.transformer_layers.SelfAttention,
     @mesh_tensorflow.transformer.transformer_layers.EncDecAttention,
     @mesh_tensorflow.transformer.transformer_layers.DenseReluDense]
decoder/make_layer_stack.num_layers = %num_layers

# Parameters for encoder/make_layer_stack:
# ==============================================================================
encoder/make_layer_stack.block_scope = True
encoder/make_layer_stack.layers = \
    [@mesh_tensorflow.transformer.transformer_layers.SelfAttention,
     @mesh_tensorflow.transformer.transformer_layers.DenseReluDense]
encoder/make_layer_stack.num_layers = %num_layers

# Parameters for mesh_train_dataset_fn:
# ==============================================================================
mesh_train_dataset_fn.mixture_or_task_name = %MIXTURE_NAME


# Parameters for noise_span_to_unique_sentinel:
# ==============================================================================
# None.

# Parameters for nonnoise_span_to_unique_sentinel:
# ==============================================================================
# None.

# Parameters for pack_dataset:
# ==============================================================================


# Parameters for pack_or_pad:
# ==============================================================================
# None.

# Parameters for random_spans_helper:
# ==============================================================================
random_spans_helper.extra_tokens_per_span_inputs = 1
random_spans_helper.extra_tokens_per_span_targets = 1
random_spans_helper.inputs_length = %inputs_length
random_spans_helper.mean_noise_span_length = %mean_noise_span_length
random_spans_helper.noise_density = %noise_density

# Parameters for targets_length/random_spans_helper:
# ==============================================================================
targets_length/random_spans_helper.extra_tokens_per_span_inputs = 1
targets_length/random_spans_helper.extra_tokens_per_span_targets = 1
targets_length/random_spans_helper.inputs_length = %inputs_length
targets_length/random_spans_helper.mean_noise_span_length = %mean_noise_span_length
targets_length/random_spans_helper.noise_density = %noise_density

# Parameters for random_spans_noise_mask:
# ==============================================================================
random_spans_noise_mask.mean_noise_span_length = %mean_noise_span_length

# Parameters for targets_length/random_spans_targets_length:
# ==============================================================================
# None.

# Parameters for random_spans_tokens_length:
# ==============================================================================
# None.

# Parameters for rate_num_examples:
# ==============================================================================
rate_num_examples.maximum = 1000000.0
rate_num_examples.scale = 1.0
rate_num_examples.temperature = 1.0

# Parameters for rate_unsupervised:
# ==============================================================================
rate_unsupervised.value = 710000.0

# Parameters for reduce_concat_tokens:
# ==============================================================================
reduce_concat_tokens.batch_size = 128
reduce_concat_tokens.feature_key = 'targets'

# Parameters for run:
# ==============================================================================
run.autostack = True
run.batch_size = ('tokens_per_batch', %tokens_per_batch)
run.dataset_split = 'train'
run.ensemble_inputs = None
run.eval_checkpoint_step = None
run.eval_dataset_fn = None
run.eval_summary_dir = None
run.export_path = ''
run.iterations_per_loop = 100
run.keep_checkpoint_max = None
run.layout_rules = \
    'ensemble:ensemble,batch:batch,d_ff:model,heads:model,vocab:model,experts:batch'
run.learning_rate_schedule = @learning_rate_schedules.learning_rate_schedule_noam
run.mesh_shape = @mesh_tensorflow.transformer.utils.tpu_mesh_shape()
run.mode = 'train' 
run.init_checkpoint = %init_checkpoint
run.model_type = 'bitransformer'
run.optimizer = @optimize.AdafactorOptimizer
run.perplexity_eval_steps = 10
run.predict_fn = None
run.save_checkpoints_steps = 2400
run.sequence_length = {'inputs': %inputs_length, 'targets': %targets_length}
run.train_dataset_fn = \
    @t5.models.mesh_transformer.mesh_train_dataset_fn
run.train_steps = 1000000000
run.variable_filter = None
run.vocabulary = \
    @t5.data.sentencepiece_vocabulary.SentencePieceVocabulary()

# Parameters for select_random_chunk:
# ==============================================================================
select_random_chunk.feature_key = 'targets'
select_random_chunk.max_length = 65536

# Parameters for decoder/SelfAttention:
# ==============================================================================
decoder/SelfAttention.attention_kwargs = None
decoder/SelfAttention.dropout_rate = %dropout_rate
decoder/SelfAttention.key_value_size = %d_kv
decoder/SelfAttention.num_heads = %num_heads
decoder/SelfAttention.num_memory_heads = 0
decoder/SelfAttention.relative_attention_num_buckets = 32
decoder/SelfAttention.relative_attention_type = 'bias_shared'
decoder/SelfAttention.shared_kv = False

# Parameters for encoder/SelfAttention:
# ==============================================================================
encoder/SelfAttention.attention_kwargs = None
encoder/SelfAttention.dropout_rate = %dropout_rate
encoder/SelfAttention.key_value_size = %d_kv
encoder/SelfAttention.num_heads = %num_heads
encoder/SelfAttention.num_memory_heads = 0
encoder/SelfAttention.relative_attention_num_buckets = 32
encoder/SelfAttention.relative_attention_type = 'bias_shared'
encoder/SelfAttention.shared_kv = False

# Parameters for SentencePieceVocabulary:
# ==============================================================================
SentencePieceVocabulary.extra_ids = 100
SentencePieceVocabulary.sentencepiece_model_file = \
    @t5.models.mesh_transformer.get_sentencepiece_model_path()

# Parameters for serialize_num_microbatches:
# ==============================================================================
serialize_num_microbatches.tokens_per_microbatch_per_replica = 8192

# Parameters for split_tokens:
# ==============================================================================
split_tokens.feature_key = 'targets'
split_tokens.max_tokens_per_segment = @preprocessors.random_spans_tokens_length()
split_tokens.min_tokens_per_segment = None

# Parameters for tpu_estimator_model_fn:
# ==============================================================================
tpu_estimator_model_fn.init_checkpoint = %init_checkpoint
tpu_estimator_model_fn.outer_batch_size = 1
tpu_estimator_model_fn.tpu_summaries = False

# Parameters for tpu_mesh_shape:
# ==============================================================================
tpu_mesh_shape.ensemble_parallelism = None
tpu_mesh_shape.model_parallelism = 1
tpu_mesh_shape.tpu_topology = '8x8'

# Parameters for decoder/Unitransformer:
# ==============================================================================
decoder/Unitransformer.d_model = %d_model
decoder/Unitransformer.ensemble = None
decoder/Unitransformer.input_full_attention = False
decoder/Unitransformer.label_smoothing = 0.0
decoder/Unitransformer.loss_denominator = None
decoder/Unitransformer.loss_fn = None
decoder/Unitransformer.loss_on_targets_only = False
decoder/Unitransformer.max_length = 512
decoder/Unitransformer.positional_embedding = False
decoder/Unitransformer.shared_embedding_and_softmax_weights = True
decoder/Unitransformer.vocab_divisor = 128
decoder/Unitransformer.z_loss = 0.0001
decoder/Unitransformer.loss_denominator = 233472

# Parameters for encoder/Unitransformer:
# ==============================================================================
encoder/Unitransformer.d_model = %d_model
encoder/Unitransformer.ensemble = None
encoder/Unitransformer.input_full_attention = False
encoder/Unitransformer.label_smoothing = 0.0
encoder/Unitransformer.loss_denominator = None
encoder/Unitransformer.loss_fn = None
encoder/Unitransformer.loss_on_targets_only = False
encoder/Unitransformer.max_length = 512
encoder/Unitransformer.positional_embedding = False
encoder/Unitransformer.shared_embedding_and_softmax_weights = True
encoder/Unitransformer.vocab_divisor = 128
encoder/Unitransformer.z_loss = 0.0001

# Parameters for unsupervised:
# ==============================================================================
unsupervised.preprocessors = \
    [@preprocessors.select_random_chunk,
     @preprocessors.reduce_concat_tokens,
     @preprocessors.split_tokens,
     @preprocessors.denoise]