File size: 114,587 Bytes
9258b0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 |
# Copyright 2022 The T5 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Preprocessors for T5 Tasks."""
# TODO(adarob): Move some of the more general preprocessors to seqio.
import collections
import functools
import math
import re
from typing import Callable, Mapping, Optional, Sequence, Union
import uuid
from absl import logging
import babel
import gin
import seqio
import tensorflow.compat.v2 as tf
# We disable no-value-for-parameter since the seqio.map_over_dataset leads to
# a false positive when seeds are provided.
# pylint:disable=no-value-for-parameter
AUTOTUNE = tf.data.experimental.AUTOTUNE
FeatureType = Mapping[str, tf.Tensor]
rekey = seqio.preprocessors.rekey
tokenize = seqio.preprocessors.tokenize
@seqio.map_over_dataset
def translate(x, source_language, target_language):
"""Convert a translation dataset to a text2text pair.
For example, say the dataset returns examples of this format:
{'de': 'Das ist gut.', 'en': 'That is good.'}
If source_language = 'de', target_language = 'en', then the outputs will have
the format:
{'inputs': 'translate German to English: Das ist gut.',
'targets': 'That is good.'}
Args:
x: an example to process.
source_language: source language code (e.g. 'en') to translate from.
target_language: target language code (e.g. 'de') to translate to.
Returns:
A preprocessed example with the format listed above.
"""
# Language codes like zh-cn are not supported; use only the first 2 chars
for language in (source_language, target_language):
if language != language[:2]:
logging.warning(
'Extended language code %s not supported. Falling back on %s.',
language, language[:2]
)
lang_id_to_string = {
source_language: babel.Locale(source_language[:2]).english_name,
target_language: babel.Locale(target_language[:2]).english_name,
}
src_str = 'translate {}'.format(lang_id_to_string[source_language])
tgt_str = ' to {}: '.format(lang_id_to_string[target_language])
return {
'inputs': tf.strings.join([src_str, tgt_str, x[source_language]]),
'targets': x[target_language],
}
@seqio.map_over_dataset
def summarize(x, article_key, summary_key):
"""Convert a summarization dataset to a text2text pair.
For example, say the dataset returns examples of this format:
{'article': <article>, 'highlights': <summary>}
If article_key = 'article', summary_key = 'highlights', then the outputs will
have the format:
{'inputs': 'summarize': <article>, 'targets': <summary>}
Args:
x: an example to process.
article_key: the feature key for the article to summarize.
summary_key: the feature key for the target summary.
Returns:
A preprocessed example with the format listed above.
"""
strs_to_join = ['summarize:', x[article_key]]
return {
'inputs': tf.strings.join(strs_to_join, separator=' '),
'targets': x[summary_key],
}
# Unicode ranges for characters in non-spaced languages.
# https://en.wikipedia.org/wiki/Category:Writing_systems_without_word_boundaries
# https://en.wikipedia.org/wiki/Han_unification#Unicode_ranges
# https://linguistics.stackexchange.com/questions/6131
NON_SPACED_LANGUAGE_RANGES = (
'\u1000-\u104f', # Burmese
'\u4e00-\u9fff', # CJK Unified Ideographs
'\u3400-\u4dbf', # CJK Unified Ideographs Extension A
'\uf900-\ufaff', # CJK Compatibility Ideographs
'\u2e80-\u2eff', # CJK Radicals Supplement
'\u31c0-\u31ef', # CJK Strokes
'\u3000-\u303f', # CJK Symbols and Punctuation
'\u3040-\u309f', # Japanese Hiragana
'\u30a0-\u30ff', # Japanese Katakana
'\ua980-\ua9df', # Javanese
'\u1780-\u17ff', # Khmer
'\u19e0-\u19ff', # Khmer Symbols
'\u0e80-\u0eff', # Lao
'\u1980-\u19df', # Tai Lue
'\u1a20-\u1aaf', # Tai Tham
'\u0e00-\u0e7f', # Thai
'\u0f00-\u0fff', # Tibetan
)
@seqio.map_over_dataset
def pad_nonspaced_languages(x, text_key='text'):
"""Pad non-spaced languages with spaces around each character.
Args:
x: an example to process.
text_key: a string, the key for the text feature to preprocess in the
dataset examples.
Returns:
A preprocessed example.
"""
res = dict(x)
text = res[text_key]
# Add spaces around any character from a non-spaced language.
pattern = ''.join(NON_SPACED_LANGUAGE_RANGES)
text = tf.strings.regex_replace(text, u'([{}])'.format(pattern), r' \1 ')
# Collapse consecutive whitespace into one space.
text = tf.strings.regex_replace(text, r'\s+', ' ')
res[text_key] = text
return res
def _pad_punctuation(text):
"""Adds spaces around punctuation."""
# Add space around punctuation.
text = tf.strings.regex_replace(text, r'([[:punct:]])', r' \1 ')
# Collapse consecutive whitespace into one space.
text = tf.strings.regex_replace(text, r'\s+', ' ')
return text
def _string_join(lst):
# Join on space, but collapse consecutive spaces.
out = tf.strings.join(lst, separator=' ')
return tf.strings.regex_replace(out, r'\s+', ' ')
def trivia_qa(dataset):
"""Convert a TriviaQA example to multiple flattened examples.
TriviaQA produces examples with this form:
{'entity_pages': {dict of wiki entities},
'search_results': <dict of web search results>,
'answer': {dict of all answers}, 'question': <question>,
'question_id': <question_id>, 'question_source': <question_source>}
This function will return flattend examples of the format:
{'inputs': 'question: <question> context: <article>'
'targets': 'answer: <sampled answer>'}
Args:
dataset: a tf.data.Dataset to process.
Returns:
A preprocessed tf.data.Dataset with the format listed above.
"""
def triviaqa_question_answer_context(x):
"""Extracts matched contexts and answers.
Returns all matched (question-context, answer) pairs.
Args:
x: A tfds sample.
Returns:
Flattened samples: (question-context, answer).
"""
contexts = []
if 'entity_pages' in x:
contexts.append(x['entity_pages']['wiki_context'])
if 'search_results' in x:
contexts.append(x['search_results']['search_context'])
contexts = tf.concat(contexts, 0)
q = _pad_punctuation(x['question'])
answers = x['answer']['normalized_aliases']
combination_size = tf.size(answers)*tf.size(contexts)
find_answers = tf.TensorArray(
tf.bool, size=combination_size, dynamic_size=True)
selected_answers = tf.TensorArray(
tf.string, size=combination_size, dynamic_size=True)
join_q_c = tf.TensorArray(
tf.string, size=combination_size, dynamic_size=True)
def cond_fn(i, find_answers, selected_answers, join_q_c):
del find_answers, selected_answers, join_q_c # Unused
return tf.less(i, combination_size)
def body_fn(i, find_answers, selected_answers, join_q_c):
"""Find answers from contexts and join."""
context_idx = tf.math.floordiv(i, tf.size(answers))
answer_idx = tf.math.mod(i, tf.size(answers))
a = _pad_punctuation(answers[answer_idx])
a_ = tf.strings.join(['.*', a, '.*'])
c = _pad_punctuation(contexts[context_idx])
find_a = tf.strings.regex_full_match(
tf.strings.lower(c),
tf.strings.lower(a_))
find_answers = find_answers.write(i, find_a)
selected_answers = selected_answers.write(i, a)
join_q_c_str = _string_join(['question:', q, 'context:', c])
join_q_c = join_q_c.write(i, join_q_c_str)
return (i + 1, find_answers, selected_answers, join_q_c)
_, find_answers, selected_answers, join_q_c = tf.while_loop(
cond_fn,
body_fn,
loop_vars=[
tf.constant(0), find_answers, selected_answers,
join_q_c
])
find_answers = find_answers.stack()
selected_answers = selected_answers.stack()
join_q_c = join_q_c.stack()
selected_answers = tf.boolean_mask(selected_answers, find_answers)
selected_join_q_c = tf.boolean_mask(join_q_c, find_answers)
return selected_join_q_c, selected_answers
def my_fn(x):
"""Create TriviaQA example."""
join_q_c, a = triviaqa_question_answer_context(x)
return {
'inputs': join_q_c,
'targets': a
}
dataset = dataset.map(my_fn, num_parallel_calls=AUTOTUNE)
return dataset.unbatch()
@seqio.map_over_dataset
def squad(x, include_context=True):
"""Convert SQuAD examples to a text2text pair.
SQuAD produces examples with this form:
{'id': <id>, context': <article>, 'question': <question>,
'answers': { 'text': [<n answers>] }}
This function will return examples of the format:
{'inputs': 'question: <question> context: <article>',
'targets': '<answer_0>',
'id': <id>, 'question': <question>, 'context': <context>,
'answers': [<n answers>]},
Args:
x: an example to process.
include_context: a boolean
Returns:
A preprocessed example with the format listed above.
"""
a = _pad_punctuation(x['answers']['text'])
q = _pad_punctuation(x['question'])
c = _pad_punctuation(x['context'])
if include_context:
inputs = _string_join(['question:', q, 'context:', c])
else:
inputs = _string_join(['squad trivia question:', q])
return {
'inputs': inputs,
'targets': a[0],
'id': x['id'],
'context': c,
'question': q,
'answers': a
}
def _span_answer(context, answer_text):
"""Finds start/end indices of answer_text in context after space tokenization.
If answer_tokens is not a sublist of context_tokens, returns empty string.
Args:
context: 0-d string tensor
answer_text: 0-d string
Returns:
A string tensor.
"""
def space_tok(s):
"""Replace non-word chars with space then split on space."""
s = tf.strings.regex_replace(s, r'\W', ' ')
return tf.strings.split(input=[s], sep=' ').values
def find_subseq(n, h):
"""Finds index of needle subsequence inside haystack.
Args:
n: 1-d tensor
h: 1-d tensor same type as n
Returns:
Index of start of n if found found; otherwise -1.
"""
l_n = tf.size(n)
l_h = tf.size(h)
found = -1
for i in tf.range(0, l_h - l_n):
if tf.reduce_all(tf.equal(h[i:i+l_n], n)):
found = i
break
return found
answer_tokens = space_tok(answer_text)
context_tokens = space_tok(context)
start = find_subseq(answer_tokens, context_tokens)
end = start + tf.size(answer_tokens) - 1
# Just take the first candidate that matches exactly.
if tf.equal(start, -1):
return ''
return tf.strings.format('start: {} end: {}', [start, end])
def squad_span_space_tokenized(dataset):
"""Convert SQuAD examples to a text2text pair with span output.
SQuAD produces examples with this form:
{'context': <article>, 'question': <question>,
'answers': { 'text': [<all answers>] }}
This function returns examples with the format
{'inputs': 'context: <article> question: <question>',
'targets': 'start: <start_index> end: <end_index>'}
where <start_index> and <end_index> specify the space-tokenized span
start/end indices. Both <start_index> and <end_index> are included in
the answer. In the case where the tokenized answer is
not found in the tokenized context, the example is skipped.
Args:
dataset: a tf.data.Dataset to process.
Returns:
A preprocessed tf.data.Dataset with the format listed above.
"""
def my_fn(x):
"""Create squad example as in squad_span_char, but tokenized on spaces."""
res = dict(x)
res['targets'] = _span_answer(x['context'], x['targets'])
return res
dataset = squad(dataset)
dataset = dataset.map(my_fn, num_parallel_calls=AUTOTUNE)
return dataset.filter(lambda x: tf.strings.length(x['targets']) > 0)
def random_split_text(dataset,
text_key='text',
min_words_per_segment=16,
max_words_per_segment=512,
max_words_total=8192):
"""Randomly split single-string examples into multiple examples each.
Segment lengths are chosen according to a log-uniform distribution.
Each incoming string is chopped into multiple equal-length examples
with the last one possibly being shorter.
If the input string is longer than max_words_total, then we use one random
chunk and discard the rest. This may help with model stability.
The intended use case is to break up long text examples for use in
unsupervised transfer-learning.
We don't really want to use this preprocessor for any dataset which has a
well-defined evaluation procedure. If apply this preprocessor e.g. in an MT
component, then the evaluation job will randomly split text when evaluating
and the BLEU will get funky.
Args:
dataset: a tf.data.Dataset with dictionaries containing the key text_key
text_key: a string
min_words_per_segment: an integer
max_words_per_segment: an integer
max_words_total: an integer
Returns:
a dataset
"""
def random_chunk(x, chunk_size, seed):
"""Pick a random chunk of a 1d Tensor.
The tensor is divided into chunks of length chunk_size, with the last
chunk being potentially smaller. A random chunk is returned.
Args:
x: a 1d tf.Tensor.
chunk_size: an integer.
seed: int32 [2]-Tensor, the random seed.
Returns:
a 1d tf.Tensor with length <= chunk_size.
"""
size = tf.size(x)
num_chunks = tf.maximum(1, (size - 1) // chunk_size + 1)
chunk_num = tf.random.stateless_uniform(
[],
seed=seed,
minval=0,
maxval=num_chunks,
dtype=tf.int32)
return x[chunk_size * chunk_num:chunk_size * (chunk_num + 1)]
@seqio.map_over_dataset(num_seeds=2)
def my_fn(x, seeds):
"""Split one string into multiple strings.
Args:
x: a feature dictionary
seeds: an int32 Tensor, shaped (2, 2), the random seeds.
Returns:
a feature dictionary
"""
text = x[text_key]
words = tf.strings.split([text]).values
if max_words_total:
words = random_chunk(words, max_words_total, seed=seeds[0])
n_words = tf.size(words)
# first pick a length (number of words per segment)
length = tf.cast(
tf.exp(
tf.random.stateless_uniform(
[],
minval=math.log(min_words_per_segment),
maxval=math.log(max_words_per_segment),
seed=seeds[1],
)
),
tf.int32)
# Pad to a multiple of length, then use tf.reshape to split up the words
# into num_segments segments each of the given length.
num_segments = tf.cast(
tf.math.ceil(
tf.cast(n_words, tf.float32) / tf.cast(length, tf.float32)
),
tf.int32)
padding = num_segments * length - n_words
words = tf.pad(words, [[0, padding]])
words = tf.reshape(words, [-1, length])
# Finally, join with spaces and strip. The padding turns into a bunch of
# spaces that get stripped out.
words = tf.strings.reduce_join(words, axis=1, separator=' ')
return {text_key: tf.strings.strip(words)}
return my_fn(dataset).unbatch()
def split_text_to_words(dataset, text_key='text', min_num_words=2):
"""Split text to words and filter out examples with too few words."""
def split(x):
res = dict(x)
res['words'] = tf.strings.split([x[text_key]]).values
return res
dataset = dataset.map(split, num_parallel_calls=AUTOTUNE)
return dataset.filter(lambda x: tf.size(x['words']) >= min_num_words)
def fill_in_the_blank(dataset,
text_key='text',
label='fill: '):
"""Create a dataset consisting of fill-in-the-blank text examples.
The input examples should have a key text_key associated with a tf.string
value.
The output examples have keys 'inputs' and 'targets'.
The input string is split on whitespace to form a sequence of words.
This sequence is chopped randomly into segments of one or more words.
Alternate segments are included in the inputs and targets, with a special
word 'X' marking a missing segment.
The given label is prepended to the inputs. Each input string produces two
examples - one the inverse of the other. Inputs with less than two words
are dropped.
EXAMPLE:
input:
{
'text': 'The fat cat sat on the mat.'
}
outputs:
{
'inputs': 'fill: The fat X the X'
'targets': 'X cat sat on X mat.'
}
{
'inputs': 'fill: X cat sat on X mat.'
'targets': 'The fat X the X'
}
Args:
dataset: a tf.data.Dataset
text_key: a string, the key for the text feature to preprocess in the
dataset examples.
label: a string, the label to prepend to the inputs.
Returns:
a tf.data.Dataset
"""
@seqio.map_over_dataset(num_seeds=3)
def my_fn(x, seeds):
"""Generates two preprocessed examples that are roughly inverses.
Args:
x: an example dict with text pre-split in `words` feature.
seeds: an int32 Tensor, shaped (3, 2), the random seeds.
Returns:
an example dict with two inputs and two targets, one for each resulting
preprocessed example.
"""
words = x['words']
n_words = tf.size(words)
# First select the break probability. We pick this on a log-uniform
# distribution between 1/(n_words + 1) and 1/2. This means that some
# sequences will be chopped roughly and others finely.
min_log_p_break = -tf.math.log(tf.cast(n_words, tf.float32) + 2.0)
max_log_p_break = -tf.math.log(2.0)
p_break = tf.exp(
tf.random.stateless_uniform(
[],
minval=min_log_p_break,
maxval=max_log_p_break,
seed=seeds[0])
)
# craffel@ says that there may be bugs in random.uniform making it not
# really uniform. This doesn't seem horribly important here, but may
# need another look.
breaks = tf.less(
tf.random.stateless_uniform([n_words - 1], seed=seeds[1]),
p_break)
def one_random_break():
pos = tf.random.stateless_uniform(
[],
minval=0,
maxval=n_words - 1,
dtype=tf.int32,
seed=seeds[2])
return tf.one_hot(pos, n_words - 1,
dtype=tf.bool, on_value=True, off_value=False)
breaks = tf.cond(
tf.math.reduce_any(breaks), lambda: breaks, one_random_break)
breaks = tf.concat([[True], breaks], axis=0)
word_to_seq_id = tf.math.mod(tf.math.cumsum(tf.cast(breaks, tf.int32)), 2)
# separators:
# if in your segment: ' '
# if break to other segment: ' X'
# else: ''
results = []
for seq_id in [0, 1]:
in_my_seq = tf.equal(word_to_seq_id, seq_id)
separator_strings = tf.where(
in_my_seq,
' ',
tf.where(breaks, ' X', '')
)
word_strings = tf.where(in_my_seq, words, '')
all_strings = tf.stack([separator_strings, word_strings], axis=1)
results.append(tf.strings.substr(
tf.strings.reduce_join(all_strings), 1, tf.int32.max))
inputs = tf.stack([tf.strings.join([label, results[0]]),
tf.strings.join([label, results[1]])])
targets = tf.stack([results[1], results[0]])
return {'inputs': inputs, 'targets': targets}
dataset = split_text_to_words(dataset, text_key, min_num_words=2)
return my_fn(dataset).unbatch()
def fill_in_the_blank_sized(
dataset,
size_bins=(1, 2, 4, 8, 16, 32, 64, 128, 256, 512),
text_key='text',
label='fill: '):
"""Fill in the blank preprocessor that labels blank with a binned size.
The actual blank size is sampled uniformly from the inclusive range of the min
and max bin. The blank is then filled in with the closest bin size to the
actual blank size.
Args:
dataset: a tf.data.Dataset, the dataset to preprocess.
size_bins: a list, a list of blank sizes to select from when labelling the
blank.
text_key: a string, the key for the text feature to preprocess in the
dataset examples.
label: a string, the label to prepend to the inputs.
Returns:
a tf.data.Dataset
"""
bins = sorted(size_bins)
@seqio.map_over_dataset(num_seeds=2)
def my_fn(x, seeds):
"""Apply transformation."""
words = x['words']
n_words = tf.size(words)
blank_size = tf.random.stateless_uniform(
[],
minval=bins[0],
maxval=tf.math.minimum(n_words, bins[-1]),
dtype=tf.dtypes.int32,
seed=seeds[0])
bin_delta = tf.math.abs(bins - blank_size)
bin_ = tf.gather(bins, tf.argmin(bin_delta))
blank_start = tf.random.stateless_uniform(
[],
minval=0,
maxval=tf.math.maximum(0, n_words-blank_size) + 1,
dtype=tf.dtypes.int32,
seed=seeds[1])
pre_blank = tf.strings.reduce_join(words[0:blank_start], separator=' ')
post_blank = tf.strings.reduce_join(
words[blank_start+blank_size:], separator=' ')
blank = tf.strings.format('_{}_', bin_)
# We strip to handle cases where blank is at beginning or end.
input_ = tf.strings.strip(
tf.strings.join([pre_blank, blank, post_blank], ' '))
input_ = tf.strings.join([label, input_])
target = tf.strings.reduce_join(
words[blank_start:blank_start+blank_size], separator=' ')
return {
'inputs': tf.strings.strip(input_),
'targets': tf.strings.strip(target)}
dataset = split_text_to_words(dataset, text_key, min_num_words=2)
# Filter out examples with fewer words than the minimum.
dataset = dataset.filter(lambda x: tf.size(x['words']) >= bins[0])
return my_fn(dataset)
def neighboring_pairs(dataset, text_key='text', reuse_sentences=True):
"""Create a dataset consisting of neighboring sentence pairs.
The input examples should have a key text_key associated with a tf.string
value.
The output examples have keys 'first' and 'second'.
We only take sentence pairs from within the same line since lines seem to
represent paragraph-like structures in our text datasets. Empty lines and
1-sentence lines will thus be ignored.
The argument reuse_sentences determines whether a sentence can be used as both
the first and last element in the pair. For example, the input with sentences
A,B,C,D will return (A,B),(B,C),(C,D) if reuse_sentences is True and
(A,B),(C,D) if reuse_sentences is False.
Args:
dataset: a tf.data.Dataset
text_key: a string, the key for the text feature to preprocess in the
dataset examples.
reuse_sentences: a boolean
Returns:
a tf.data.Dataset
"""
def split_by_lines(dataset):
"""Splits text in dataset by line, removing empty lines."""
def my_fn(text):
lines = tf.strings.split([text], sep='\n').values
return tf.strings.strip(lines)
dataset = dataset.map(my_fn, num_parallel_calls=AUTOTUNE)
dataset = dataset.unbatch()
return dataset.filter(lambda x: tf.strings.length(x) > 0)
def split_into_pairs(line):
"""Split a given text example into pairs of neighboring sentences."""
# TODO(mmatena): Use better sentence segmentation.
sep = str(uuid.uuid4())
sentences = tf.strings.regex_replace(line, r'((?:\.|\!|\?)+)', r'\1' + sep)
sentences = tf.strings.strip(tf.strings.split([sentences], sep).values)
if reuse_sentences:
firsts = sentences[:-1]
seconds = sentences[1:]
else:
firsts = sentences[:-1:2]
seconds = sentences[1::2]
return {
'first': firsts,
'second': seconds,
}
def example_len(x):
return tf.math.minimum(
tf.strings.length(x['first']), tf.strings.length(x['second']))
# Split by lines.
dataset = dataset.map(lambda x: x[text_key], num_parallel_calls=AUTOTUNE)
dataset = split_by_lines(dataset)
# Get pairs of neighboring sentences.
dataset = dataset.map(split_into_pairs, num_parallel_calls=AUTOTUNE)
dataset = dataset.unbatch()
# Remove examples with empty strings.
dataset = dataset.filter(lambda x: example_len(x) > 0)
return dataset
@seqio.map_over_dataset
def glue(x, benchmark_name, label_names, feature_names=None, id_key='idx'):
"""Convert a dataset from glue to text2text examples.
This function uses the feature names from the dataset to unpack examples into
a format amenable for a text2text problem. For example, consider the Quora
Question Pairs (QQP) benchmark, which would suggest
benchmark_name="qqp"
label_names=['not_duplicate', 'duplicate']
For QQP, a typical example might look like
{
"question1": "Why do I easily get bored of my friends?",
"question2": "Why do I get bored of friends so quickly?",
"label": 1,
"idx": 10,
}
This example would be transformed to
{
"inputs": (
"qqp question1: Why do I easily get bored of my friends? question2: "
"Why do I get bored of my friends so quickly?"
),
"targets": "duplicate",
"idx": 10,
}
Args:
x: an example to process.
benchmark_name: the name of the GLUE benchmark for this dataset.
label_names: a list of label names corresponding to class index.
feature_names: an optional ordered list of feature names. If provided,
features will be ordered in this way in the output. If not provided, all
features (except 'idx' and 'label') will be used, sorted by name.
id_key: str, key for id in the dataset. If not provided, 'idx' will be used.
if None, no id will be added to the dataset.
Returns:
A preprocessed example.
"""
# If an ordering is not provided, sort feature keys to ensure a consistent
# order.
feature_keys = (
feature_names or sorted(set(x.keys()).difference(['label', 'idx'])))
# Pack keys (formatted as " key: ") and corresponding text feature
strs_to_join = []
for key in feature_keys:
strs_to_join.append('{}:'.format(key))
strs_to_join.append(x[key])
# Add benchmark name at the start
strs_to_join.insert(0, benchmark_name)
label_name = tf.cond(
# When no label is provided (label == -1), use "<unk>"
tf.equal(x['label'], -1),
lambda: tf.constant('<unk>'),
# Otherwise grab the label text from label_names
lambda: tf.gather(label_names, x['label']),
)
joined = tf.strings.join(strs_to_join, separator=' ')
ex = {}
if benchmark_name == 'multirc':
# Remove HTML markup.
joined = tf.strings.regex_replace(joined, '<br>', ' ')
joined = tf.strings.regex_replace(joined, '<(/)?b>', '')
# Store the data index in the returned example (used by eval)
ex['idx/paragraph'] = x['idx']['paragraph']
ex['idx/question'] = x['idx']['question']
ex['idx/answer'] = x['idx']['answer']
else:
# Store the data index in the returned example (used by eval)
if id_key:
ex['idx'] = x[id_key]
ex['inputs'] = joined
ex['targets'] = label_name
return ex
@seqio.map_over_dataset
def stsb(x):
"""Convert STSB examples to text2text format.
STSB maps two sentences to a floating point number between 1 and 5
representing their semantic similarity. Since we are treating all tasks as
text-to-text tasks we need to convert this floating point number to a string.
The vast majority of the similarity score labels in STSB are in the set
[0, 0.2, 0.4, ..., 4.8, 5.0]. So, we first round the number to the closest
entry in this set, and then we convert the result to a string (literally e.g.
"3.4"). This converts STSB roughly into a 26-class classification dataset.
This function uses the feature names from the dataset to unpack examples into
a format amenable for a text2text problem.
For example, a typical example from STSB might look like
{
"sentence1": "Three more US soldiers killed in Afghanistan",
"sentence2": "NATO Soldier Killed in Afghanistan",
"label": 1.8,
}
This example would be transformed to
{
"inputs": (
"stsb sentence1: Three more US soldiers killed in Afghanistan "
"sentence2: NATO Soldier Killed in Afghanistan"
),
"targets": "1.8",
}
Args:
x: an example to process.
Returns:
A preprocessed example.
"""
strs_to_join = [
'stsb sentence1:', x['sentence1'], 'sentence2:', x['sentence2']
]
label_string = tf.as_string(tf.round(x['label'] * 5) / 5, precision=1)
joined = tf.strings.join(strs_to_join, separator=' ')
return {'inputs': joined, 'targets': label_string, 'idx': x['idx']}
@seqio.map_over_dataset
def wsc(x):
"""Convert WSC examples to text2text format.
WSC includes a sentence along with 2 'spans': the first denoting a noun and
the other a pronoun. The 'label' specifies whether or not the pronoun is
referencing the noun. This preprocessor puts ' * ' around the noun and ' # '
around the pronoun.
For example, a typical example from WSC might look like
{
'text': 'This is a test sentence .',
'span1_text': 'test',
'span1_index': 3,
'span2_text': 'This',
'span2_index': 0,
'label': 0
}
This example would be transformed to
{
'inputs': 'wsc text: # This # is a * test * sentence .',
'targets': 'False'
}
Args:
x: an example to process.
Returns:
A preprocessed example.
"""
def _mark_span(text, span_str, span_idx, mark):
pattern_tmpl = r'^((?:\S+\s){N})(W)'
pattern = tf.strings.regex_replace(pattern_tmpl, 'N',
tf.as_string(span_idx))
pattern = tf.strings.regex_replace(pattern, 'W', span_str)
return tf.strings.regex_replace(text, pattern, r'\1{0} \2 {0}'.format(mark))
text = x['text']
text = _mark_span(text, x['span1_text'], x['span1_index'], '*')
# Compensate for 2 added "words" added in previous step.
span2_index = x['span2_index'] + 2 * tf.cast(
x['span1_index'] < x['span2_index'], tf.int32)
text = _mark_span(text, x['span2_text'], span2_index, '#')
# Add benchmark name at the start
strs_to_join = ['wsc', 'text:', text]
label_name = tf.cond(
# When no label is provided (label == -1), use "<unk>"
tf.equal(x['label'], -1),
lambda: tf.constant('<unk>'),
# Otherwise use False/True.
lambda: tf.gather(['False', 'True'], x['label']))
joined = tf.strings.join(strs_to_join, separator=' ')
return {'inputs': joined, 'targets': label_name, 'idx': x['idx']}
@gin.configurable
def record(dataset):
"""Convert ReCoRD examples to text2text examples.
ReCoRD contains a passage, query containing a '@placeholder' string, and a set
of entities that are the possible values of the placeholder. Each train and
validation example will have a list of answers, any of which would be
considered correct.
For example, a typical example from ReCoRD might look like
{
'passsage': 'This is the passage.',
'query': 'A @placeholder is a bird.',
'entities': ['penguin', 'potato', 'pigeon'],
'answers': ['penguin', 'pigeon'],
}
which this preprocessor would turn into the following two examples:
{
'inputs': 'record query: A @placeholder is a bird. entities: penguin, '
'potato, pigeon passage: This is the passage.',
'targets': 'penguin',
}
and
{
'inputs': 'record query: A @placeholder is a bird. entities: penguin, '
'potato, pigeon passage: This is the passage.',
'targets': 'potato',
}
Args:
dataset: a tf.data.Dataset to process.
Returns:
a tf.data.Dataset
"""
def process_answers(x):
"""Helper fn to get one example per answer."""
ex = x.copy()
num_answers = tf.size(ex['answers'])
def duplicate_along_first_dim(t):
n_duplicates = tf.math.maximum(num_answers, 1)
return tf.broadcast_to(
t, shape=tf.concat([[n_duplicates], tf.shape(t)], axis=0))
for k, v in x.items():
if k != 'idx':
ex[k] = duplicate_along_first_dim(v)
ex['targets'] = tf.cond(
tf.greater(num_answers, 0), lambda: x['answers'],
lambda: tf.constant(['<unk>']))
ex['idx'] = {
'passage': duplicate_along_first_dim(x['idx']['passage']),
'query': duplicate_along_first_dim(x['idx']['query']),
}
return ex
def my_fn(x):
"""Converts the processed example to text2text strings."""
passage = x['passage']
passage = tf.strings.regex_replace(passage,
r'(\.|\?|\!|\"|\')\n@highlight\n',
r'\1 ')
passage = tf.strings.regex_replace(passage, r'\n@highlight\n', '. ')
strs_to_join = [
'record query:', x['query'], 'entities:',
tf.strings.reduce_join(x['entities'], separator=', '), 'passage:',
passage
]
joined = tf.strings.join(strs_to_join, separator=' ')
ex = {}
# Store the data index in the returned example (used by eval)
ex['idx/passage'] = x['idx']['passage']
ex['idx/query'] = x['idx']['query']
ex['inputs'] = joined
# Note that "answers" has been converted to a single string by the
# process_answers function.
ex['targets'] = x['targets']
# Pass-through full list of answers for eval
ex['answers'] = x['answers']
return ex
dataset = dataset.map(process_answers, num_parallel_calls=AUTOTUNE)
dataset = dataset.unbatch()
return dataset.map(my_fn, num_parallel_calls=AUTOTUNE)
def multi_translate(dataset, source_language, target_language):
"""Convert a multi-translate dataset to a text2text pair.
For example, say the dataset returns examples which have a 'translations'
feature key so that examples have the following format:
{
...
'translations': {
'language': ['de', 'fr', 'en'],
'translation': ['Das ist gut.', 'Ca c'est bon', 'That is good.']
},
...
}
If source_language = 'de', target_language = 'en', then this function will
return examples of the format:
{'inputs': 'translate German to English: Das is gut.',
'targets': 'That is good.'}
Any other languages present in the dataset will be filtered out.
Args:
dataset: a tf.data.Dataset to process.
source_language: source language code (e.g. 'en') to translate from.
target_language: target language code (e.g. 'de') to translate to.
Returns:
A preprocessed tf.data.Dataset with the format listed above.
"""
def filter_fn(x):
langs = x['translations']['language']
# Test whether both source/target_language appear in the language list
source_in_langs = tf.reduce_any(tf.equal(source_language, langs))
target_in_langs = tf.reduce_any(tf.equal(target_language, langs))
return tf.logical_and(source_in_langs, target_in_langs)
def map_fn(x):
langs = x['translations']['language']
# Retrieve the index in langs where source/target_language appears
src_idx = tf.squeeze(tf.where(tf.equal(langs, source_language)))
tgt_idx = tf.squeeze(tf.where(tf.equal(langs, target_language)))
return {
source_language: x['translations']['translation'][src_idx],
target_language: x['translations']['translation'][tgt_idx],
}
dataset = dataset.filter(filter_fn)
dataset = dataset.map(map_fn, num_parallel_calls=AUTOTUNE)
return translate(dataset, source_language, target_language)
@seqio.map_over_dataset
def definite_pronoun_resolution_simple(x, label='wsc:'):
"""Converts DPR examples to a simple text to text format.
A typical example from the definite pronoun resolution dataset might look like
{
'sentence': 'Bob asked Tom if he can lend some money.',
'pronoun': 'he',
'candidates': ['Bob', 'Tom'],
'label': 1,
}
This will be transformed to
{
'inputs': 'wsc: Bob asked Tom if *he* can lend some money.'
'targets': 'Tom',
}
Args:
x: an example to process.
label: a string, the label to prepend to the inputs.
Returns:
A preprocessed example.
"""
# If there are multiple instances of the pronoun in the sentence, the first
# one is the one that needs to be resolved.
inputs = [
label,
tf.strings.regex_replace(
x['sentence'],
tf.strings.join([r' (', x['pronoun'], r')( |\.|,)']),
r' *\1*\2',
replace_global=False,
),
]
return {
'inputs': tf.strings.join(inputs, separator=' '),
'targets': x['candidates'][x['label']],
}
def next_sentence_prediction(dataset,
text_key='text',
reuse_sentences=True,
label_sentences=False,
p_neighbors=0.5,
label='nsp: ',
buffer_size=50000):
"""Create a dataset containing a next sentence prediction objective.
The input examples should have a key text_key associated with a tf.string
value.
The output examples have keys 'inputs' and 'targets'.
EXAMPLE OUTPUTS:
{
input: "nsp: sentence1: The man went to the store. sentence2: Penguins are "
"flightless birds.",
target: "not_next"
}
The "sentence1:" and "sentence2:" labels will be omitted if label_sentences is
False.
Args:
dataset: a tf.data.Dataset
text_key: a string, the key for the text feature to preprocess in the
dataset examples.
reuse_sentences: a boolean, see docs for `neighboring_pairs` for more info.
label_sentences: a boolean
p_neighbors: a float between 0 and 1, the probability that a sentence pair
will be neighbors.
label: a string, the label to prepend to the inputs.
buffer_size: an int, the size of the shuffle buffer used to get
non-neighboring sentences.
Returns:
a tf.data.Dataset
"""
sentence1_label, sentence2_label = '', ''
if label_sentences:
sentence1_label, sentence2_label = 'sentence1: ', 'sentence2: '
empty = tf.constant('', dtype=tf.string, shape=[1])
dataset = neighboring_pairs(
dataset, text_key=text_key, reuse_sentences=reuse_sentences)
dataset = dataset.shuffle(buffer_size).batch(2, drop_remainder=True)
def some_are_empty(*tensors):
"""See if at least one tensor has shape [0]."""
empty = [tf.equal(tf.size(t), 0) for t in tensors]
return tf.reduce_any(empty)
@seqio.map_over_dataset(num_seeds=1)
def my_fn(x, seed):
"""Function to be applied to each example in dataset."""
use_neighbors = (
tf.random.stateless_uniform(shape=[], seed=seed) < p_neighbors
)
firsts, seconds = tf.cond(
use_neighbors,
lambda: (x['first'], x['second']),
lambda: (x['first'], tf.stack([x['second'][1], x['second'][0]])),
)
relation_label = tf.cond(
use_neighbors,
lambda: 'next',
lambda: 'not_next',
)
inputs = []
for i in range(2):
first_inputs = firsts[i]
second_inputs = seconds[i]
def create_examples(first_i=first_inputs, second_i=second_inputs):
return tf.strings.join([
label,
sentence1_label,
first_i,
' ',
sentence2_label,
second_i,
])
inpt = tf.cond(
some_are_empty(first_inputs, second_inputs),
lambda: empty,
create_examples,
)
inputs.append(tf.strings.strip(inpt))
inputs = tf.reshape(inputs, [-1])
targets = tf.reshape(2 * [relation_label], [-1])
return {'inputs': inputs, 'targets': targets}
dataset = my_fn(dataset).unbatch()
def example_len(x):
return tf.math.minimum(
tf.strings.length(x['inputs']), tf.strings.length(x['targets']))
# Remove examples with empty strings.
return dataset.filter(lambda x: example_len(x) > 0)
@seqio.map_over_dataset
def lm(x):
"""Basic language modeling objective for text - empty inputs.
Given inputs with the format:
{"text": "Here is some text."}
This preprocess produces examples with the format
{"inputs": "", "targets": "Here is some text."}
Args:
x: an example to process.
Returns:
A preprocessed example.
"""
return {'inputs': '', 'targets': x['text']}
def _wsc_inputs(x):
"""Given an example from SuperGLUE WSC, compute the 'inputs' value.
The output will look like a fill in the blank with the pronoun blanked out.
For example, the text
'Mitchell asked Tom if he could lend some money.'
would be transformed to
'Mitchell asked Tom if X could lend some money.'
Args:
x: A dict that is an example from the WSC task of SuperGLUE.
Returns:
A scalar string tensor.
"""
words = tf.strings.split([x['text']], sep=' ').values
# We would need some special logic to handle the case where the pronoun is the
# first or last word in the text. None of the examples in WSC seem to have
# this, so we are ignoring these cases.
with tf.control_dependencies([
tf.assert_greater(x['span2_index'], 0),
tf.assert_less(x['span2_index'], tf.size(words)),
]):
pronoun_index = tf.identity(x['span2_index'])
def create_input():
with tf.control_dependencies(
[tf.assert_equal(words[pronoun_index], x['span2_text'])]):
return tf.strings.join(
[
tf.strings.reduce_join(words[:pronoun_index], separator=' '),
'X',
tf.strings.reduce_join(
words[pronoun_index + 1:], separator=' '),
],
separator=' ',
)
# Handle some special cases.
if tf.equal(
x['text'],
'The boy continued to whip the pony , and eventually the pony threw him over. John laughed out quite loud. \"Good for him,\" he said. '
):
return (
'The boy continued to whip the pony , and eventually the pony threw '
'him over. John laughed out quite loud. "Good for X ," he said.'
)
# Using the span2_index, we get 'use' instead of 'it'.
if tf.equal(
x['text'],
'When they had eventually calmed down a bit , and had gotten home, Mr. Farley put the magic pebble in an iron safe . Some day they might want to use it , but really for now, what more could they wish for?'
):
return (
'When they had eventually calmed down a bit , and had gotten home, '
'Mr. Farley put the magic pebble in an iron safe . Some day they might '
'want to use X , but really for now, what more could they wish for?'
)
return create_input()
def wsc_simple(dataset,
label='wsc:',
correct_referent_only=False):
"""Converts SuperGLUE WSC examples to a simple text to text format.
A typical example from SuperGLUE WSC might look like
{
'text': 'Mitchell asked Tom if he could lend some money.',
'span1_text': 'Tom',
'span2_text': 'he',
'span2_index': 4,
}
This will be transformed to
{
'inputs': 'wsc: Bob asked Tom if *he* can lend some money.'
'targets': 'Tom',
}
The targets will always be the text of the referent regardless of whether it
is the correct referrent of the pronoun. Thus for training purposes, please
set `correct_referent_only` to be True.
Args:
dataset: a tf.data.Dataset
label: a string, the label to prepend to the inputs.
correct_referent_only: a bool, whether to filter out examples for which the
targets is not the correct referent of the pronoun.
Returns:
a tf.data.Dataset
"""
def map_fn(x):
"""Function to be called for every example in dataset."""
inputs = [
label,
tf.strings.regex_replace(
_wsc_inputs(x), r' X ', ' *' + x['span2_text'] + '* '),
]
referent = x['span1_text']
return {
'inputs': tf.strings.join(inputs, separator=' '),
# The reshape is necessary as otherwise the tensor has unknown rank.
'targets': tf.reshape(referent, shape=[]),
'label': x.get('label', 0),
'idx': x['idx'],
}
if correct_referent_only:
dataset = dataset.filter(lambda x: tf.cast(x.get('label', False), tf.bool))
return dataset.map(map_fn, num_parallel_calls=AUTOTUNE)
@seqio.map_over_dataset
def wnli_simple(x, label='wsc:'):
"""Converts GLUE WNLI examples to a simple text to text format.
A typical example from WNLI might look like:
{
'sentence1': 'The fish ate the worm. It was tasty.',
'sentence2': 'The worm was tasty.',
'label': 1,
}
This will be transformed to:
{
'inputs': 'wsc: The fish ate the worm. *It* was tasty.',
'targets': 'The worm',
'premise': 'The fish ate the worm. It was tasty.,
'hypothesis': 'The worm was tasty.',
'label': 1,
}
This preprocessor has been manually verified to produce reasonable WSC
examples for the dev and test sets. Tasks using this preprocessor should only
be used eval and not train.
Args:
x: an example to process.
label: a string, the label to prepend to the inputs.
Returns:
A preprocessed example.
"""
pronouns = ['he', 'she', 'they', 'it', 'her', 'his', 'their', 'them', 'him']
PronounMatch = collections.namedtuple( # pylint: disable=invalid-name
'PronounMatch', ['score', 'index_in_premise', 'candidate'])
def split_clean(s):
"""Returns array of words with punctuation and capitalization removed."""
words = [
re.sub(r'(\.|,|\?|\!)$', '', w) for w in s.strip().lower().split(' ')
]
return [w for w in words if w]
def get_all_pronoun_indices(s):
return [i for i, w in enumerate(s) if w in pronouns]
def get_post_match_size(hypothesis, words):
"""Returns len of largest prefix of words that is substr of hypothesis."""
hypothesis = ' '.join(hypothesis)
for i in range(len(words)):
if ' '.join(words[:i + 1]) not in hypothesis:
return i
return len(words)
def get_pre_match_size(hypothesis, words):
"""Returns len of largest suffix of words that is substr of hypothesis."""
return get_post_match_size(hypothesis[::-1], words[::-1])
def get_pronoun_match(premise, hypothesis, index):
"""Return the PronounMatch for the pronoun at `index` in premise."""
pre, post = premise[:index], premise[index + 1:]
pre_match_size = get_pre_match_size(hypothesis, pre)
post_match_size = get_post_match_size(hypothesis, post)
score = pre_match_size + post_match_size
candidate = ''
if score:
pre_match = pre[-pre_match_size or len(pre):]
post_match = post[:post_match_size]
m = re.search(' '.join(pre_match + [r'(.+)'] + post_match),
' '.join(hypothesis))
if not m:
# Handle cases where the candidate is at the start of the hypthesis.
m = re.search(' '.join([r'^(.+)'] + post_match), ' '.join(hypothesis))
if not m:
# Handle cases where the candidate is at the end of the hypthesis.
m = re.search(' '.join(pre_match + [r'(.+)$']), ' '.join(hypothesis))
if m:
candidate = m.group(1)
return PronounMatch(
score=score, index_in_premise=index, candidate=candidate)
def get_best_pronoun_match(premise, hypothesis):
"""Returns the match for the pronoun in the premise to disambiguate."""
pronoun_indices = get_all_pronoun_indices(premise)
scoredpronouns = [
get_pronoun_match(premise, hypothesis, index)
for index in pronoun_indices
]
return max(scoredpronouns, key=lambda x: x.score)
def highlight(sentence, index):
words = sentence.split(' ')
word = words[index]
if word[-1] in ['.', ',', '!', '?']:
highlighted = '*{}* {}'.format(word[:-1], word[-1])
else:
highlighted = '*{}*'.format(word)
return ' '.join(words[:index] + [highlighted] + words[index + 1:])
def make_nonpossessive(word):
# WSC simple targets will never be possessive, even when the pronoun is
# possesive.
if word.endswith("'"):
return word[:-1]
elif word.endswith("'s"):
return word[:-2]
else:
return word
def clean_up(candidate):
words = candidate.split(' ')
# Sometimes the candidate extraction messes up, and the candidate will start
# with the start of the hypothesis and extend to the correct candidate. We
# can try to clean up the candidate in some cases by removing everything up
# to the last article in the sentence.
article_index = max(
[words.index(art) for art in {'a', 'an', 'the'} if art in words] or [0])
return ' '.join(words[article_index:])
def process_candidate(candidate, hypothesis):
"""Handles special cases and adds proper punctuation/capitalization."""
candidate = clean_up(candidate)
pattern = '({})'.format(' '.join([
r'{}(?:\.|,|\?|\!)?'.format(re.escape(c)) for c in candidate.split(' ')
]))
m = re.search(pattern, hypothesis, re.IGNORECASE)
if not m:
raise ValueError(
'Unable to find candidate "{}" in hypothesis "{}".'.format(
candidate, hypothesis))
candidate = m.group(1)
if candidate and candidate[-1] in ['.', ',', '!', '?']:
candidate = candidate[:-1]
return make_nonpossessive(candidate)
def compute_inputs_and_targets(premise, hypothesis):
"""Compute inputs and targets for WNLI simple."""
premise = tf.compat.as_text(premise.numpy())
hypothesis = tf.compat.as_text(hypothesis.numpy())
match = get_best_pronoun_match(
split_clean(premise), split_clean(hypothesis))
targets = process_candidate(match.candidate, hypothesis)
inputs = '{} {}'.format(label, highlight(premise, match.index_in_premise))
return inputs, targets
inputs, targets = tf.py_function(
compute_inputs_and_targets,
inp=[x['sentence1'], x['sentence2']],
Tout=[tf.string, tf.string])
return {
# The reshape is necessary as otherwise the tensor has unknown rank.
'inputs': tf.reshape(inputs, shape=[]),
'targets': tf.reshape(targets, shape=[]),
'premise': x['sentence1'],
'hypothesis': x['sentence2'],
'label': x.get('label', 0),
'idx': x['idx'],
}
def rank_classification(
ds: tf.data.Dataset,
inputs_fn: Callable[[FeatureType], tf.Tensor],
targets_fn: Callable[[FeatureType], tf.Tensor],
is_correct_fn: Callable[[FeatureType], tf.Tensor],
weight_fn: Optional[Callable[[FeatureType], tf.Tensor]] = None,
mode: str = 'eval',
passthrough_feature_keys: Optional[Sequence[str]] = None,
) -> tf.data.Dataset:
"""Prepare dataset for rank classification scoring.
Intended to be used with `rank_classification` postprocessor and metric.
`inputs_fn` and `targets_fn` must return the 'inputs' and 'targets' features,
respectively, for each possible class label given the raw example features.
'is_correct_fn' must return the 'is_correct' feature, a boolean for whether
each label is correct.
In 'train' mode, only the inputs / targets marked correct will be produced.
In 'eval' mode, all inputs / targets will be produced.
In 'fewshot_eval', all inputs / targets will be produced as a single batch.
Each output example will also be given a unique 'idx' feature. The first dim
is a sequential index for the input example and the second is the index of the
generated output for it. E.g., the second output example from the fourth input
example would be `[3, 1]`.
To be clear, consider the following arguments:
inputs_fn=lambda ex: ex['prefix'],
targets_fn=lambda ex: ex['suffix'],
is_correct_fn=lambda ex: tf.one_hot(ex['label'], num_classes)
weight_fn=lambda ex: ex['weight']
Given the following example:
{
'prefix': ['The farmland needed ', 'The farmland wanted '],
'suffix': ['water', 'cows'],
'label': 0,
'weight': 1.0,
}
the preprocessor would return:
[{
'idx': [0, 0],
'inputs': 'The farmland needed ',
'targets': 'water',
'is_correct': True,
'weight': 1.0
},
{
'idx': [0, 1],
'inputs': 'The farmland wanted ',
'targets': 'cows',
'is_correct': False,
'weight': 1.0
}]
With mode set to 'train', it would return only the first example,
since it uses the correct label. With mode set to 'fewshot_eval', it would
return both examples in a single batch.
Args:
ds: a tf.data.Dataset to preprocess.
inputs_fn: a callable that returns the 'inputs' features for each label
given the input example.
targets_fn: a callable that returns the 'targets' features for each label
given the input example.
is_correct_fn: a callable that returns the 'label' feature. May be an int32
scalar or 1-D Tensor.
weight_fn: a callable that returns the 'weight' feature (float32 scalar).
mode: A string, one of 'train' or'eval 'train' produces only the correct
example(s) based on the label value(s). 'eval' produces an example for
every possible class value, sequentially. 'fewshot_eval' produces an
example for every possible class value, batched together for each input
example.
passthrough_feature_keys: a sequence of feature names that should be passed
through to the output of this preprocessor. eg: ["starburst", "tokens"]
Returns:
A tf.data.Dataset containing 'idx', inputs', 'targets', and 'is_correct'.
"""
if mode not in ('train', 'eval', 'fewshot_eval'):
raise ValueError(
"Mode must be one of 'train', 'eval', or 'fewshot_eval'. "
f"Got '{mode}'.")
def make_examples(idx, ex):
inputs = inputs_fn(ex)
targets = targets_fn(ex)
is_correct = tf.cast(is_correct_fn(ex), tf.bool)
tf.debugging.assert_equal(
tf.size(is_correct), [tf.size(inputs), tf.size(targets)],
'`inputs_fn`, `targets_fn`, and `is_correct_fn` must return the same '
'size tensors.')
num_out = tf.size(is_correct)
in_idx = tf.fill([num_out], tf.cast(idx, tf.int32))
out_idx = tf.range(num_out)
output = {
'idx': tf.stack([in_idx, out_idx], 1),
'inputs': inputs,
'targets': targets,
'is_correct': is_correct,
}
if passthrough_feature_keys is not None:
for feature_name in passthrough_feature_keys:
output[feature_name] = [ex[feature_name]] * len(targets)
if weight_fn is not None:
output['weight'] = tf.fill(tf.shape(is_correct), weight_fn(ex))
output['weight'] = tf.cast(output['weight'], tf.float32)
return output
ds = ds.enumerate()
ds = ds.map(make_examples, num_parallel_calls=AUTOTUNE)
if mode != 'fewshot_eval':
ds = ds.unbatch()
if mode == 'train':
ds = ds.filter(lambda ex: ex['is_correct'])
return ds
def rank_classification_formatter(
ds: tf.data.Dataset,
inputs_formats: Union[str, Sequence[str]],
targets_formats: Union[str, Sequence[str]],
mode: str = 'eval',
label_key: str = 'label',
weight_key: Optional[str] = None) -> tf.data.Dataset:
"""Create 'inputs' and 'targets' strings for ranking classification.
Intended to be used with `rank_classification` postprocessor and metric.
Inputs will be formatted by filling in the feature values in the
`inputs_formats` and `targets_formats` strings.
Nested features can be accessed by concatenating the features using forward
slash. For eg: if sub-sub-key is nested under sub-key, which is nested under
key, then sub-sub-key can be accessed using key/sub-key/sub-sub-key.
In 'eval' mode, a separate example will be produced for each targets / inputs
format string. These can then be scored to find the one with the highest
likelihood. The `rank_classification` postprocessor and metric allow you to
evaluate with this technique.
In 'train' mode, only the targets / inputs format string indexed by the
label(s) will be produced. In 'eval' mode, all inputs / targets will be
produced.
Each input example will also be given a unique, sequential index called 'idx'.
For example, with arguments:
```
inputs_format='{premise} What is the {question}? X',
targets_formats=[
'I think {choice1}.',
'I think {choice2}.'
],
mode='eval'
```
given the input:
{
'premise': 'The farmland needed irrigation.',
'question': 'effect',
'choice1' : 'a canal was constructed',
'choice2': 'the crops grew tall',
'label': 0,
}
the preprocessor would return:
[{
'idx': 0,
'inputs': 'The farmland needed irrigation. What is the effect? X',
'targets': 'I think a canal was constructed.',
'is_correct': True
},
{
'idx': 0,
'inputs': 'The farmland needed irrigation. What is the effect? X',
'targets': 'I think the crops grew tall.',
'is_correct': False
}]
With `mode='train'`, it would return only the first example,
since it uses the correct label.
With `mode='fewshot_eval'`, it would return both examples in a single batch.
Args:
ds: a tf.data.Dataset to preprocess.
inputs_formats: A string or a list of strings to format with feature values
to produce 'inputs'. Feature keys should be surrounded by curly braces to
be replaced.
targets_formats: A string or a list of strings to format with feature values
to produce 'targets', one for each possible class value. Feature keys
should be surrounded by curly braces to be replaced.
mode: A string, one of 'train', 'eval', or 'fewshot_train') 'train' produces
only the correct example(s) based on the label value(s). 'eval' produces
an example for every possible class value, sequentially.
'fewshot_eval': produces an example for every possible class value,
batched together for each input example.
label_key: A string, the feature key for the integer label value(s).
weight_key: A string, the feature key for the float example weight.
Returns:
A tf.data.Dataset containing 'idx', inputs', 'targets', and 'is_correct'.
"""
if (isinstance(inputs_formats, (list, tuple)) and
isinstance(targets_formats, (list, tuple))):
if len(inputs_formats) != len(targets_formats):
raise ValueError(
f'The inputs_formats ({len(inputs_formats)}) and '
f'targets_formats ({len(targets_formats)}) are both instances '
'of list or tuple, but do not have matching lengths.')
elif isinstance(inputs_formats, (list, tuple)):
num_classes = len(inputs_formats)
targets_formats = [targets_formats] * num_classes
elif isinstance(targets_formats, (list, tuple)):
num_classes = len(targets_formats)
inputs_formats = [inputs_formats] * num_classes
else:
raise ValueError(
'One of the inputs_formats and targets_formats has to '
f'be a list or tuple, inputs_formats: {inputs_formats}, '
f'target_formats: {targets_formats}.')
def _format_str(features, fmt):
keys = set(re.findall(r'{(\S+)}', fmt))
s = fmt
for k in keys:
value = features
for subkey in k.split('/'):
value = value[subkey]
if not isinstance(value, tf.Tensor):
raise ValueError(
f'Final value of key \'{k}\' must be a tf.string. '
f'Got: {type(value).__name__}')
tf.debugging.assert_type(
value, tf.string,
f'Final value of key \'{k}\' must be a tf.string. '
f'Got: {value.dtype.name}')
s = tf.strings.regex_replace(s, '{%s}' % k, value)
return s
def _apply_formats(features, fmts):
return [_format_str(features, fmt) for fmt in fmts]
def _is_correct_fn(ex):
labels = ex[label_key]
is_correct = tf.one_hot(labels, num_classes, on_value=True, off_value=False)
if labels.shape.rank:
is_correct = tf.math.reduce_any(is_correct, axis=0)
return is_correct
def _weight_fn(ex):
return ex[weight_key]
return rank_classification(
ds,
inputs_fn=functools.partial(_apply_formats, fmts=inputs_formats),
targets_fn=functools.partial(_apply_formats, fmts=targets_formats),
is_correct_fn=_is_correct_fn,
weight_fn=None if weight_key is None else _weight_fn,
mode=mode)
@seqio.map_over_dataset
def parse_tsv(line, field_names=None, field_delim='\t'):
"""Splits TSV lines into dict examples mapping field name to string value.
Args:
line: an example containing a comma/tab-delimited string.
field_names: a list of strings, the ordered names of the TSV fields.
Defaults to "inputs" and "targets".
field_delim: a string, the delimiter to split on e.g. ',' for csv.
Returns:
A feature dict mapping field name to string value.
"""
field_names = field_names or ['inputs', 'targets']
return dict(
zip(field_names,
tf.io.decode_csv(
line,
record_defaults=[''] * len(field_names),
field_delim=field_delim,
use_quote_delim=False)))
@seqio.map_over_dataset
def preprocess_tsv(line,
field_delim='\t',
num_fields=2,
inputs_format='{0}',
targets_format='{1}',
field_names=None):
r"""Parse tab-delimited strings into inputs and targets.
This function takes a tf.data.Dataset of strings, each of which contains
tab-delimited fields. The function returns a tf.data.Dataset of feature
dictionaries of the form {"inputs": string, "targets": string}.
inputs_format contains a template string and field numbers or names used to
produce the "inputs" string.
targets_format contains a template string and field numbers or names used to
produce the "targets" string.
Example (field numbers):
The input dataset contains the lines:
"6,7,42"
"2,9,18"
preprocess_tsv(dataset,
field_delim=',',
inputs_format='numerator: {2} denominator: {1}',
targets_format='quotient: {0}'
would produce a dataset containing the dictionaries:
{"inputs": "numerator: 42 denomnator: 7", "targets": "quotient: 6"}
{"inputs": "numerator: 18 denomnator: 9", "targets": "quotient: 2"}
Example (field names):
The input dataset contains the lines:
"6,7,42"
"2,9,18"
preprocess_tsv(dataset,
field_delim=',',
field_names=['quot', 'denom', 'numer'],
inputs_format='numerator: {numer} denominator: {denom}',
targets_format='quotient: {quot}'
would produce a dataset containing the dictionaries:
{"inputs": "numerator: 42 denominator: 7", "targets": "quotient: 6"}
{"inputs": "numerator: 18 denominator: 9", "targets": "quotient: 2"}
Args:
line: an example containing comma/tab-delimited string.
field_delim: a string, the delimiter to split on e.g. ',' for csv.
num_fields: an integer
inputs_format: a string, the desired output format with placeholders for
field values.
targets_format: a string, the desired output format with placeholders for
field values.
field_names: a list of strings, the ordered names of the TSV fields.
defaults to None (i.e. use field number in *_format)
Returns:
A feature dict with 'inputs' and 'targets' features.
"""
def _format_part_with_field_numbers(part, field_values):
found = re.findall(r'{(\d+)}', part)
if found:
return field_values[int(found[0])]
else:
return part
def _format_part_with_field_names(part, field_names, field_values):
field_names_re = '|'.join(['{{({})}}'.format(x) for x in field_names])
found = re.findall(field_names_re, part)
if found:
pos = field_names.index(''.join(found[0]))
return field_values[int(pos)]
else:
return part
def _format(format_string, field_names, field_values):
if field_names is None:
parts = [
_format_part_with_field_numbers(p, field_values)
for p in re.split(r'({\d+})', format_string)
]
else:
field_names_re = '(' + '|'.join(['{{{}}}'.format(x) for x in field_names
]) + ')'
parts = [
_format_part_with_field_names(p, field_names, field_values)
for p in re.split(field_names_re, format_string)
]
return tf.strings.join(parts)
field_values = tf.io.decode_csv(
line,
record_defaults=[''] *
(num_fields if field_names is None else len(field_names)),
field_delim=field_delim,
use_quote_delim=False)
return {
'inputs': _format(inputs_format, field_names, field_values),
'targets': _format(targets_format, field_names, field_values)
}
# ======================Token Preprocessors=====================================
# TODO(adarob): Add a test.
def span_corruption(dataset,
sequence_length,
output_features,
mean_noise_span_length=3.0,
noise_density=0.15,
input_feature_key='inputs',
merge_examples_to_reduce_padding=True,
reserved_for_packing=None):
"""Final pretraining objective used in Raffel et al., 2019.
Args:
dataset: A tf.data.Dataset with dictionaries containing the key
`input_feature_key`.
sequence_length: dict mapping of feature key to int length for that feature.
output_features: mapping of keys to features.
mean_noise_span_length: the mean number of tokens per masked span per
example.
noise_density: what fraction of the tokens to mask.
input_feature_key: which feature to use from the dataset as the input text
tokens.
merge_examples_to_reduce_padding: if True, combines multiple input examples
to reduce padding.
reserved_for_packing: if specified, reduces the desired inputs length by the
specified amount to enable multiple examples to be packed together
downstream.
Returns:
a dataset
"""
inputs_length = sequence_length[input_feature_key]
if reserved_for_packing:
inputs_length -= reserved_for_packing
input_length, targets_length = random_spans_helper(
extra_tokens_per_span_inputs=1,
extra_tokens_per_span_targets=1,
inputs_length=inputs_length,
mean_noise_span_length=mean_noise_span_length,
noise_density=noise_density)
if sequence_length['targets'] < targets_length:
raise ValueError(
f'Expected targets length for span corruption ({targets_length}) is '
f'greater than configured targets length '
f"({sequence_length['targets']})")
ds = dataset
ds = select_random_chunk(
ds,
output_features=output_features,
feature_key='targets',
max_length=65536)
if merge_examples_to_reduce_padding:
ds = reduce_concat_tokens(ds, feature_key='targets', batch_size=128)
ds = split_tokens(
ds,
feature_key='targets',
min_tokens_per_segment=None,
max_tokens_per_segment=input_length)
ds = denoise(
ds,
output_features,
inputs_fn=noise_span_to_unique_sentinel,
targets_fn=nonnoise_span_to_unique_sentinel,
noise_density=noise_density,
noise_mask_fn=functools.partial(
random_spans_noise_mask,
mean_noise_span_length=mean_noise_span_length),
input_feature_key=input_feature_key)
return ds
# TODO(adarob): Add a test.
def iid_denoising(dataset, sequence_length, output_features):
"""Baseline pretraining objective used in Raffel et al., 2019."""
ds = dataset
ds = select_random_chunk(ds, output_features=output_features,
feature_key='targets', max_length=65536)
ds = reduce_concat_tokens(ds, feature_key='targets', batch_size=128)
ds = split_tokens_to_inputs_length(ds, output_features=output_features,
sequence_length=sequence_length)
ds = denoise(
ds,
output_features,
inputs_fn=noise_span_to_unique_sentinel,
targets_fn=nonnoise_span_to_unique_sentinel,
noise_density=0.15,
noise_mask_fn=iid_noise_mask
)
return ds
def prefix_lm(dataset, sequence_length, output_features):
"""Prefix language modeling objective used in Raffel et al. 2019."""
ds = dataset
ds = select_random_chunk(ds, output_features=output_features,
feature_key='targets', max_length=65536)
ds = split_tokens_to_inputs_length(ds, output_features=output_features,
sequence_length=sequence_length)
ds = denoise(
ds,
output_features,
inputs_fn=drop_nonnoise_tokens,
targets_fn=drop_noise_tokens,
noise_density=0.5,
noise_mask_fn=random_prefix_noise_mask,
)
return ds
def full_lm(dataset, sequence_length, output_features):
"""Full language modeling objective with EOS only at document boundaries."""
ds = dataset
ds = select_random_chunk(ds, output_features=output_features,
feature_key='targets', max_length=65536)
ds = seqio.preprocessors.append_eos(ds, output_features)
ds = reduce_concat_tokens(ds, feature_key='targets', batch_size=128)
# Don't use `split_tokens_to_targets_length` since we've alrady added EOS.
ds = split_tokens(ds, max_tokens_per_segment=sequence_length['targets'])
return ds
@gin.configurable
def select_random_chunk(dataset: tf.data.Dataset,
output_features: Mapping[str, seqio.Feature],
max_length: Optional[int] = None,
feature_key: str = 'targets',
additional_feature_keys: Optional[Sequence[str]] = None,
passthrough_feature_keys: Optional[
Sequence[str]] = None,
sequence_length: Optional[Mapping[str, int]] = None,
uniform_random_start: bool = False,
min_length: Optional[int] = None,
**unused_kwargs) -> tf.data.Dataset:
"""Token-preprocessor to extract one span of at most `max_length` tokens.
If the token sequence is longer than `max_length`, then we return a random
subsequence. Otherwise, we return the full sequence.
This is generally followed by split_tokens.
Args:
dataset: A tf.data.Dataset with dictionaries containing the key feature_key.
output_features: Mapping of keys to features.
max_length: Typically specified in gin configs, takes priority over
sequence_length.
feature_key: Which feature to use from the dataset.
additional_feature_keys: Additional features to use. The same chunk will be
selected from these features as from the one specified in feature_key,
so they should all have the same length.
passthrough_feature_keys: Additional keys to pass through unchanged.
sequence_length: Used if max_length is not specified. Typically passed in
by the data pipeline. feature_key will be used to select the length.
uniform_random_start: If True, will select a starting point in
[-max_length + 1, n_tokens). If False, will select one of a set of chunks
offset by max_length. Both of these starting points try to ensure each
token has an equal probability of being included.
min_length: If specified, lengths of chunks will be selected uniformly at
random from [min_length, max_length]. Note that chunks can end up shorter
than min_length if at the beginning or end of the sequence.
Returns:
a dataset
"""
if passthrough_feature_keys:
chunk_keys = set([feature_key] + (additional_feature_keys or []))
overlap_keys = chunk_keys & set(passthrough_feature_keys)
if overlap_keys:
raise ValueError(
f'chunk keys {overlap_keys} also included in passthrough keys')
if max_length is None and sequence_length is not None:
max_length = sequence_length[feature_key]
if output_features[feature_key].add_eos:
# Leave room to insert an EOS token.
max_length -= 1
if max_length is None:
raise ValueError('Must specify max_length or sequence_length.')
@seqio.map_over_dataset(num_seeds=2)
def _my_fn(x, seeds):
"""Select a random chunk of tokens.
Args:
x: a 1d Tensor
seeds: an int32 Tensor, shaped (2, 2), the random seeds.
Returns:
a 1d Tensor
"""
tokens = x[feature_key]
n_tokens = tf.shape(tokens)[0]
if min_length is not None:
length = tf.random.stateless_uniform(
[],
minval=min_length,
maxval=max_length,
dtype=tf.int32,
seed=seeds[0])
else:
length = max_length
if uniform_random_start:
start = tf.random.stateless_uniform(
[],
minval=-length + 1, # pylint:disable=invalid-unary-operand-type
maxval=n_tokens,
dtype=tf.int32,
seed=seeds[1])
end = tf.minimum(start + length, n_tokens)
start = tf.maximum(start, 0)
else:
num_segments = tf.cast(
tf.math.ceil(
tf.cast(n_tokens, tf.float32) / tf.cast(length, tf.float32)
),
tf.int32)
start = length * tf.random.stateless_uniform(
[],
maxval=num_segments,
dtype=tf.int32,
seed=seeds[1])
end = tf.minimum(start + length, n_tokens)
chunk = {feature_key: tokens[start:end]}
if additional_feature_keys is not None:
for k in additional_feature_keys:
with tf.control_dependencies([
tf.assert_equal(
tf.shape(tokens)[0],
tf.shape(x[k])[0],
message=(f'Additional feature {k} is not the same size as '
f'{feature_key} along axis 0 in select_random_chunk().'
)
)
]):
chunk[k] = x[k][start:end]
if passthrough_feature_keys is not None:
for k in passthrough_feature_keys:
chunk[k] = x[k]
return chunk
# Filter empty examples.
dataset = dataset.filter(lambda x: tf.not_equal(tf.size(x[feature_key]), 0))
return _my_fn(dataset)
@gin.configurable
def reduce_concat_tokens(dataset,
feature_key='targets',
batch_size=128,
**unused_kwargs):
"""Token-preprocessor to concatenate multiple unrelated documents.
If we want to generate examples of exactly the right length,
(to avoid wasting space on padding), then we use this function, folowed by
split_tokens.
Args:
dataset: a tf.data.Dataset with dictionaries containing the key feature_key.
feature_key: an string
batch_size: an integer - how many documents to concatenate into one
Returns:
a dataset
"""
dataset = dataset.map(
lambda x: {feature_key: x[feature_key]}, num_parallel_calls=AUTOTUNE)
dataset = dataset.padded_batch(batch_size, padded_shapes={feature_key: [-1]})
def _my_fn(x):
tokens = tf.reshape(x[feature_key], [-1])
# strip padding
tokens = tf.boolean_mask(tokens, tf.cast(tokens, tf.bool))
return {feature_key: tokens}
return dataset.map(_my_fn, num_parallel_calls=AUTOTUNE)
@seqio.map_over_dataset
def trim_tokens_at_front(x,
sequence_length,
keys_to_trim=None,
**unused_kwargs):
"""Token-preprocessor to trim sequence at the beginning.
Args:
x: an example with dictionaries containing keys_to_trim.
sequence_length: a dict of ints.
keys_to_trim: a list of feature keys.
Returns:
A preprocessed example.
"""
for key in (keys_to_trim or sequence_length.keys()):
if key in x:
# trim tokens, leaving room for EOS which gets added later
x[key] = x[key][-(sequence_length[key] - 1):]
return x
def trivia_qa_truncate_inputs(dataset, output_features, sequence_length):
"""Token preprocessor for the trivia QA dataset to truncate inputs.
This function takes a dataset containing "targets" and "inputs". It searches
for the "targets" in the "inputs" and truncates the "inputs" to
`sequence_length` while ensuring that the "targets" are present in the
"inputs". The function will randomly select a subset of "inputs".
If "targets" are not found in the "inputs", then the example is
is dropped from the dataset.
E.g.
Input dataset
{
"inputs": [0, 3, 5, 7, 9, 11, 13, 15, 17, 18]
"targets": [5, 7, 9]
}
Output dataset (assuming sequence_length['inputs'] = 4)
{
"inputs": [3, 5, 7, 9]
"targets": [5, 7, 9]
}
or
{
"inputs": [5, 7, 9, 11]
"targets": [5, 7, 9]
}
Args:
dataset: a tf.data.Dataset with dictionaries containing the "inputs" and
"targets".
output_features: unused by this function.
sequence_length: a dict, with keys as "inputs" and "targets" indicating the
maximum number of tokens in each of the sequences.
Returns:
a dataset
"""
del output_features
@seqio.map_over_dataset(num_seeds=1)
def my_fn(features, seed):
"""Function to map original dataset to the new dataset."""
inputs = features['inputs']
targets = features['targets']
ans_len = tf.shape(targets)[0]
max_input_tokens = sequence_length['inputs']
def truncate_inputs():
"""Helper function to truncate the inputs."""
def answer_in_context(context, answer):
"""Helper function that checks if the answer is present in the context.
Args:
context: Tensor, tokenized representation of the context
answer: Tensor, tokenized representation of the answer
Returns:
result: boolean, indicates if the answer was present in the context.
pos_mask: boolean mask, a mask for every possible start position of
the answer in the context. Indicates whether the answer starts at
the particular position.
"""
conv_inp = tf.reshape(tf.cast(context, tf.float32), [1, -1, 1])
ans_len = tf.shape(answer)[0]
filters = tf.eye(ans_len, dtype=tf.float32)
# Assume context len is N and answer len is M.
# Use a convolution to create a matrix of (N-M) x M elements where
# each row of the matrix is a sequence of len M. This matrix contains
# all possible contiguous sequences of length M from the context.
# Every row of this matrix is compared with the answer to check if the
# answer exists in the context.
strided = tf.nn.conv1d(conv_inp,
tf.reshape(filters, [ans_len, 1, ans_len]), 1,
'VALID')
strided = tf.cast(strided[0], answer.dtype)
pos_mask = tf.reduce_all(
tf.equal(strided, tf.reshape(answer, [1, -1])), 1)
result = tf.reduce_any(pos_mask)
return result, pos_mask
def slice_inputs(inputs, answer_len, pos_mask, seed=None):
"""Helper function to slice inputs while keeping the answer."""
ans_start_pos = tf.cast(tf.where(pos_mask)[0][0], tf.int32)
inputs_len = tf.shape(inputs)[0]
start_range_min = tf.maximum(
0, ans_start_pos - (max_input_tokens - answer_len))
start_range_max = tf.minimum(ans_start_pos,
inputs_len - max_input_tokens) + 1
start_pos = tf.random.stateless_uniform(
[],
minval=start_range_min,
maxval=start_range_max,
dtype=tf.int32,
seed=seed)
return inputs[start_pos:start_pos + max_input_tokens]
result, pos_mask = answer_in_context(inputs, targets)
if result:
return slice_inputs(inputs, ans_len, pos_mask, seed=seed)
else:
return tf.constant([], dtype=inputs.dtype)
if tf.greater(tf.shape(inputs)[0], max_input_tokens):
inputs = truncate_inputs()
return {'inputs': inputs, 'targets': features['targets']}
dataset = my_fn(dataset)
return dataset.filter(lambda x: tf.size(x['inputs']) > 0)
@gin.configurable()
def unsupervised(dataset,
preprocessors=None,
output_features=None,
sequence_length=None):
"""Configure this to point at unsupervised preprocessors.
This function creates an extra level of indirection in case we want
different unsupervised pretraining functions in the future which do not
fit into the denoise() framework.
This function should be used as a post-cache preprocessing function.
Args:
dataset: A tf.data.Dataset to process.
preprocessors: a list of token-preprocessor functions. These functions
should take unused kwargs if output_features or sequence_length is not
used.
output_features: dict(str, Feature), output features of the Task to be
passed to the model.
sequence_length: dict mapping feature key to int length for that feature.
Returns:
A preprocessed tf.data.Dataset.
"""
if preprocessors is None:
logging.warning(
'unsupervised preprocessor got preprocessors=None; no preprocessing '
'will be applied.'
)
return dataset
kwargs = {}
if output_features:
kwargs['output_features'] = output_features
if sequence_length:
kwargs['sequence_length'] = sequence_length
for p in preprocessors:
dataset = p(dataset, **kwargs)
return dataset
# ======================== split_tokens and helpers ============================
@gin.configurable
def split_tokens(dataset: tf.data.Dataset,
min_tokens_per_segment: Optional[int] = None,
max_tokens_per_segment: int = gin.REQUIRED,
feature_key: str = 'targets',
additional_feature_keys: Optional[Sequence[str]] = None,
passthrough_feature_keys: Optional[Sequence[str]] = None,
num_parallel_calls: int = AUTOTUNE,
**unused_kwargs) -> tf.data.Dataset:
"""Split examples into multiple examples each.
The intended use case is to break up long examples for use in unsupervised
transfer-learning.
This function is generally preceded by select_random_chunk.
If min_tokens_per_segment is provided, the segment length is chosen randomly
per document from a log-uniform distribution. If min_tokens_per_segment is
None, then the segment length is max_tokens_per_segment (except for a possibly
shorter last segment in each document).
Args:
dataset: a tf.data.Dataset with dictionaries containing the key feature_key.
min_tokens_per_segment: an optional integer
max_tokens_per_segment: an integer, the maximum number of tokens in each
segment. Only the final segment may be shorter.
feature_key: a string, the feature to split
additional_feature_keys: Additional features to split. The same chunk size
will be used, so they should be the same size as feature_key.
passthrough_feature_keys: Features to pass through without any splitting.
num_parallel_calls: num_parallel_calls value to pass to map_over_dataset
Returns:
a dataset
"""
if passthrough_feature_keys:
split_keys = set([feature_key] + (additional_feature_keys or []))
overlap_keys = split_keys & set(passthrough_feature_keys)
if overlap_keys:
raise ValueError(
f'split keys {overlap_keys} also included in passthrough keys')
@seqio.map_over_dataset(num_seeds=1, num_parallel_calls=num_parallel_calls)
def _split_tokens(x, seed):
"""Split one token sequence into multiple sequences."""
tokens = x[feature_key]
n_tokens = tf.shape(tokens)[0]
if min_tokens_per_segment is None:
length = max_tokens_per_segment
else:
# pick a length - log-uniformly distributed
length = tf.cast(
tf.exp(
tf.random.stateless_uniform(
[],
minval=math.log(min_tokens_per_segment),
maxval=math.log(max_tokens_per_segment),
seed=seed
)
),
tf.int32)
# Pad to a multiple of length, then use tf.reshape to split up the tokens
# into num_segments segments each of the given length.
num_segments = tf.cast(
tf.math.ceil(
tf.cast(n_tokens, tf.float32) / tf.cast(length, tf.float32))
,
tf.int32)
padding = num_segments * length - tf.shape(tokens)[0]
feature_keys_to_split = [feature_key]
orig_lengths = {}
outputs = {}
if additional_feature_keys is not None:
feature_keys_to_split.extend(additional_feature_keys)
for k in feature_keys_to_split:
with tf.control_dependencies([
tf.assert_equal(
tf.shape(tokens)[0],
tf.shape(x[k])[0],
message=(f'Additional feature {k} is not the same size as '
f'{feature_key} along axis 0 in split_tokens().')
)
]):
shape = tf.shape(x[k])[1:]
shape_list = x[k].shape[1:]
padded = tf.pad(
x[k],
tf.concat([[[0, padding]],
tf.zeros([len(shape_list), 2], dtype=tf.int32)],
axis=0))
orig_lengths[k] = tf.concat(
[tf.repeat(length, num_segments - 1), [length - padding]], axis=0)
outputs[k] = tf.reshape(
padded, tf.concat([[-1, length], shape], axis=0))
if passthrough_feature_keys:
for k in passthrough_feature_keys:
outputs[k] = tf.tile(
tf.expand_dims(x[k], axis=0),
tf.concat([[num_segments], tf.tile([1], [tf.rank(x[k])])], axis=0))
return outputs, orig_lengths
def _strip_padding(inputs, orig_lengths):
output = {}
for k, v in inputs.items():
if passthrough_feature_keys and k in passthrough_feature_keys:
output[k] = v
else:
output[k] = v[:orig_lengths[k]]
return output
# Filter empty examples.
dataset = dataset.filter(lambda x: tf.not_equal(tf.size(x[feature_key]), 0))
dataset = _split_tokens(dataset)
dataset = dataset.unbatch()
dataset = dataset.map(_strip_padding, num_parallel_calls=AUTOTUNE)
return dataset
@gin.configurable
def split_tokens_to_inputs_length(dataset, sequence_length,
output_features, **kwargs):
max_tokens = sequence_length['inputs']
if output_features['inputs'].add_eos:
# Leave room to insert an EOS token.
max_tokens -= 1
return split_tokens(dataset, max_tokens_per_segment=max_tokens, **kwargs)
@gin.configurable
def split_tokens_to_targets_length(dataset, sequence_length,
output_features, **kwargs):
max_tokens = sequence_length['targets']
if output_features['targets'].add_eos:
# Leave room to insert an EOS token.
max_tokens -= 1
return split_tokens(dataset, max_tokens_per_segment=max_tokens, **kwargs)
@gin.configurable
def split_tokens_to_random_length(dataset, sequence_length,
output_features, **kwargs):
max_tokens = sequence_length['inputs']
if output_features['inputs'].add_eos:
# Leave room to insert an EOS token.
max_tokens -= 1
return split_tokens(dataset,
min_tokens_per_segment=8,
max_tokens_per_segment=max_tokens,
**kwargs)
@gin.configurable
def concatenate_and_split_to_fixed_length(dataset,
sequence_length,
output_features,
feature_key='targets',
**unused_kwargs):
"""Concatenate tokens across examples, then split to fixed-size chunks.
Chunk length is determined by sequence_length[feature_key].
Args:
dataset: a tf.data.Dataset
sequence_length: a dict of ints.
output_features: a dict mapping feature name to t5.data.Feature.
feature_key: a string
Returns:
a tf.data.Dataset
"""
dataset = dataset.map(lambda x: {feature_key: x[feature_key]})
max_tokens = sequence_length[feature_key]
if output_features[feature_key].add_eos:
# Leave room to insert an EOS token.
max_tokens -= 1
return dataset.unbatch().batch(max_tokens)
@gin.configurable
def filter_by_string_length(dataset,
feature_key='targets',
min_length=1,
max_length=1000000,
**unused_kwargs):
"""Filter examples by string length.
Args:
dataset: a tf.data.Dataset (not tokenized)
feature_key: a string
min_length: an integer
max_length: an integer
Returns:
a tf.data.Dataset
"""
def my_fn(x):
l = tf.strings.length(x[feature_key])
return tf.logical_and(tf.greater_equal(l, min_length),
tf.less_equal(l, max_length))
return dataset.filter(my_fn)
@gin.configurable
def random_spans_helper(inputs_length=gin.REQUIRED,
noise_density=gin.REQUIRED,
mean_noise_span_length=gin.REQUIRED,
extra_tokens_per_span_inputs=gin.REQUIRED,
extra_tokens_per_span_targets=gin.REQUIRED,
verbose=False):
"""Training parameters to avoid padding with random_spans_noise_mask.
When training a model with random_spans_noise_mask, we would like to set the
other training hyperparmeters in a way that avoids padding. This function
helps us compute these hyperparameters.
We assume that each noise span in the input is replaced by
extra_tokens_per_span_inputs sentinel tokens, and each non-noise span in the
targets is replaced by extra_tokens_per_span_targets sentinel tokens.
This function tells us the required number of tokens in the raw example (for
split_tokens()) as well as the length of the encoded targets.
Note that this function assumes the inputs and targets will have EOS appended
and includes that in the reported length.
Args:
inputs_length: an integer - desired length of the tokenized inputs sequence
noise_density: a float
mean_noise_span_length: a float
extra_tokens_per_span_inputs: an integer
extra_tokens_per_span_targets: an integer
verbose: a bool indicating whether to log sequence lengths
Returns:
tokens_length: length of original text in tokens
targets_length: an integer - length in tokens of encoded targets sequence
"""
def _tokens_length_to_inputs_length_targets_length(tokens_length):
num_noise_tokens = int(round(tokens_length * noise_density))
num_nonnoise_tokens = tokens_length - num_noise_tokens
num_noise_spans = int(round(num_noise_tokens / mean_noise_span_length))
# inputs contain all nonnoise tokens, sentinels for all noise spans
# and one EOS token.
return (
num_nonnoise_tokens +
num_noise_spans * extra_tokens_per_span_inputs + 1,
num_noise_tokens +
num_noise_spans * extra_tokens_per_span_targets + 1)
tokens_length = inputs_length - 1
while (_tokens_length_to_inputs_length_targets_length(tokens_length + 1)[0]
<= inputs_length):
tokens_length += 1
inputs_length, targets_length = (
_tokens_length_to_inputs_length_targets_length(tokens_length))
# minor hack to get the targets length to be equal to inputs length
# which is more likely to have been set to a nice round number.
if noise_density == 0.5 and targets_length > inputs_length:
tokens_length -= 1
targets_length -= 1
if verbose:
logging.info(
'tokens_length=%s inputs_length=%s targets_length=%s '
'noise_density=%s mean_noise_span_length=%s ',
tokens_length, inputs_length, targets_length,
noise_density, mean_noise_span_length)
return tokens_length, targets_length
@gin.configurable
def random_spans_tokens_length():
"""Helper for gin-configuring split_tokens with random_spans_noise_mask."""
return random_spans_helper()[0]
@gin.configurable
def random_spans_targets_length():
"""Helper for gin-configuring the targets sequence length."""
return random_spans_helper()[1]
# ========================== denoise and helpers ===============================
@gin.configurable()
def denoise(dataset,
output_features,
noise_density=gin.REQUIRED,
noise_mask_fn=gin.REQUIRED,
inputs_fn=gin.REQUIRED,
targets_fn=None,
passthrough_feature_keys: Optional[Sequence[str]] = None,
input_feature_key='inputs',
**unused_kwargs):
"""Gin-configurable token preprocessor for self-supervised denoising tasks.
This function takes a dataset containing "targets" sequences,
and turns each sequence into a dictionary containing:
{
"inputs": noisy version of the original sequence
"targets": the full original sequence or missing parts of original sequence
}
In particular, for each sequence, we choose a boolean noise_mask identifying
which tokens in the sequence to corrupt, as defined by the given
noise_mask_fn.
Given the sequence and the noise mask, we generate the inputs and targets
using the given inputs_fn and targets_fn respectively.
The self-supervised tasks vary along these axes:
- noise_density: What fraction of the tokens to select as noise
- noise_mask_fn: What pattern should the noise mask follow
(iid, regular segments, etc.)
- inputs_fn: How to apply the noise
(drop noise tokens, replace with sentinels, etc.)
- targets_fn: How to represent the output
(full sequence, only non-noise tokens, etc.)
Note: Some functionality has been deleted, which we may or may not want to
restore at a later date. The code for this functionality can be found in
the deleted code for this CL. In particular:
- mixture of masking and random replacement
- task labels prepended to the inputs
Args:
dataset: A tf.data.Dataset to process.
output_features: a dict mapping feature name to t5.data.Feature.
noise_density: a float
noise_mask_fn: a function from (length, noise_density) -> boolean mask
inputs_fn: a function from (tokens, noise_mask, vocabulary) -> tokens
targets_fn: a function from (tokens, noise_mask, vocabulary) -> tokens
passthrough_feature_keys: names of additional features to include in output
input_feature_key: name of feature to use as inputs
Returns:
A preprocessed tf.data.Dataset.
"""
if passthrough_feature_keys and (input_feature_key in passthrough_feature_keys
or 'targets' in passthrough_feature_keys):
raise ValueError(
f"passthrough keys cannot contain '{input_feature_key}' or 'targets'")
@seqio.map_over_dataset(num_seeds=6)
def my_fn(features, seeds):
"""Map function."""
tokens = features['targets']
vocabulary = output_features['targets'].vocabulary
if (input_feature_key in output_features and
vocabulary != output_features[input_feature_key].vocabulary):
raise ValueError(
'denoise creates inputs based on tokenized targets but was applied '
'to a task that uses different vocabularies for inputs and targets.')
noise_mask = noise_mask_fn(tf.size(tokens), noise_density, seeds=seeds[:2])
inputs = inputs_fn(tokens, noise_mask, vocabulary, seeds=seeds[2:4])
if targets_fn:
targets = targets_fn(tokens, noise_mask, vocabulary, seeds=seeds[4:6])
else:
targets = tokens
return {
input_feature_key: inputs,
'targets': targets,
**{
k: features[k]
for k in features
if passthrough_feature_keys and k in passthrough_feature_keys
}
}
return my_fn(dataset)
@gin.configurable()
def iid_noise_mask(length, noise_density, seeds):
"""Independent and identically distributed token noise.
Args:
length: an int32 scalar.
noise_density: a float - approximate density of output mask.
seeds: an int32 Tensor, shaped (1, 2), the random seed.
Returns:
a boolean tensor with shape [length].
"""
return tf.random.stateless_uniform([length], seed=seeds[0]) < noise_density
@gin.configurable()
def regular_noise_mask(length,
noise_density,
seeds,
min_span_length=1,
max_span_length=5):
"""Noise mask consisting of equally spaced spans of equal length.
The span length and the offset are chosen randomly per-example.
The beginning and end of the sequence may be part of shorter spans of noise.
For example, if noise_density=0.25 and a span length of 2 is chosen,
then the output might be:
[T F F F F F F T T F F F F F F T T F F F F F F T T F F]
Args:
length: an int32 scalar.
noise_density: a float - approximate density of output mask.
seeds: an int32 Tensor, shaped (2, 2), the random seeds.
min_span_length: an integer.
max_span_length: an integer.
Returns:
a boolean tensor with shape [length].
"""
span_length = tf.random.stateless_uniform(
[],
minval=min_span_length,
maxval=max_span_length + 1,
dtype=tf.int32,
seed=seeds[0])
period = tf.cast(
tf.round(tf.cast(span_length, tf.float32) / noise_density), tf.int32)
offset = tf.random.stateless_uniform(
[],
maxval=period,
dtype=tf.int32,
seed=seeds[1])
return (tf.range(length, dtype=tf.int32) + offset) % period < span_length
@gin.configurable()
def random_spans_noise_mask(length,
noise_density,
seeds,
mean_noise_span_length=3.0):
"""Noise mask consisting of random spans of noise tokens.
The number of noise tokens and the number of noise spans and non-noise spans
are determined deterministically as follows:
num_noise_tokens = round(length * noise_density)
num_nonnoise_spans = num_noise_spans = round(
num_noise_tokens / mean_noise_span_length)
Spans alternate between non-noise and noise, beginning with non-noise.
Subject to the above restrictions, all masks are equally likely.
Args:
length: an int32 scalar (length of the incoming token sequence)
noise_density: a float - approximate density of output mask
seeds: an int32 Tensor, shaped (2, 2)
mean_noise_span_length: a number
Returns:
a boolean tensor with shape [length]
"""
orig_length = length
# increase length to avoid degeneracy
length = tf.maximum(length, 2)
def to_int(x):
return tf.cast(x, tf.int32)
def to_float(x):
return tf.cast(x, tf.float32)
num_noise_tokens = to_int(tf.round(to_float(length) * noise_density))
# avoid degeneracy by ensuring positive numbers of noise and nonnoise tokens.
num_noise_tokens = tf.minimum(tf.maximum(num_noise_tokens, 1), length - 1)
num_noise_spans = to_int(
tf.round(to_float(num_noise_tokens) / mean_noise_span_length))
# avoid degeneracy by ensuring positive number of noise spans
num_noise_spans = tf.maximum(num_noise_spans, 1)
num_nonnoise_tokens = length - num_noise_tokens
# pick the lengths of the noise spans and the non-noise spans
def _random_segmentation(num_items, num_segments, seed):
"""Partition a sequence of items randomly into non-empty segments.
Args:
num_items: an integer scalar > 0
num_segments: an integer scalar in [1, num_items]
seed: an integer seed
Returns:
a Tensor with shape [num_segments] containing positive integers that add
up to num_items
"""
first_in_segment = tf.pad(
seqio.stateless_shuffle(
to_int(tf.range(num_items - 1) < num_segments - 1),
seed),
[[1, 0]])
segment_id = tf.cumsum(first_in_segment)
segment_length = tf.math.segment_sum(tf.ones_like(segment_id), segment_id)
return segment_length
noise_span_lengths = _random_segmentation(
num_noise_tokens, num_noise_spans, seeds[0])
nonnoise_span_lengths = _random_segmentation(
num_nonnoise_tokens, num_noise_spans, seeds[1])
interleaved_span_lengths = tf.reshape(
tf.stack([nonnoise_span_lengths, noise_span_lengths], axis=1),
[num_noise_spans * 2])
span_starts = tf.cumsum(interleaved_span_lengths)[:-1]
span_start_indicator = tf.math.unsorted_segment_sum(
tf.ones_like(span_starts), span_starts, length)
span_num = tf.cumsum(span_start_indicator)
is_noise = tf.equal(span_num % 2, 1)
return is_noise[:orig_length]
@gin.configurable()
def random_prefix_noise_mask(length, noise_density, seeds):
"""First part of the sequence is noise (for prefix_lm).
The length of the prefix is chosen uniformly between [1, length)
noise_density must be 0.5.
TODO(noam): figure out some distribution to use if noise_density != 0.5.
Args:
length: an int32 scalar.
noise_density: a float - must equal 0.5.
seeds: an int32 Tensor, shaped (1, 2), the random seed.
Returns:
a boolean tensor with shape [length].
"""
if noise_density != 0.5:
raise NotImplementedError(
'noise density must equal 0.5 for random_prefix_noise_mask')
max_input_tokens = length - 1
min_input_tokens = tf.minimum(max_input_tokens, 1)
num_input_tokens = tf.random.stateless_uniform(
[],
minval=min_input_tokens,
maxval=max_input_tokens + 1,
dtype=tf.int32,
seed=seeds[0])
return tf.range(length, dtype=tf.int32) < num_input_tokens
@gin.configurable()
def sentinel_id(vocabulary, return_value=None):
"""Token ID to use as a sentinel.
By default, we use the last token in the vocabulary.
Args:
vocabulary: a t5.data.vocabularies.Vocabulary
return_value: an optional integer
Returns:
an integer
"""
if return_value is not None:
return return_value
return vocabulary.vocab_size - 1
@gin.configurable()
def noise_token_to_sentinel(tokens, noise_mask, vocabulary, seeds):
"""Replace each noise token with the given sentinel.
Args:
tokens: a 1d integer Tensor
noise_mask: a boolean Tensor with the same shape as tokens
vocabulary: a vocabulary.Vocabulary
seeds: an unused int32 Tensor
Returns:
a Tensor with the same shape and dtype as tokens
"""
del seeds
return tf.where(noise_mask,
tf.cast(sentinel_id(vocabulary), tokens.dtype),
tokens)
@gin.configurable()
def noise_span_to_sentinel(tokens, noise_mask, vocabulary, seeds):
"""Replace each run of consecutive noise tokens with a single sentinel.
Args:
tokens: a 1d integer Tensor
noise_mask: a boolean Tensor with the same shape as tokens
vocabulary: a vocabulary.Vocabulary
seeds: an unused int32 Tensor
Returns:
a Tensor with the same shape and dtype as tokens
"""
del seeds
tokens = tf.where(noise_mask,
tf.cast(sentinel_id(vocabulary), tokens.dtype),
tokens)
prev_token_is_noise = tf.pad(noise_mask[:-1], [[1, 0]])
subsequent_noise_tokens = tf.logical_and(noise_mask, prev_token_is_noise)
return tf.boolean_mask(tokens, tf.logical_not(subsequent_noise_tokens))
@gin.configurable()
def nonnoise_span_to_sentinel(tokens, noise_mask, vocabulary, seeds):
return noise_span_to_sentinel(
tokens, tf.logical_not(noise_mask), vocabulary, seeds)
@gin.configurable()
def noise_span_to_unique_sentinel(tokens, noise_mask, vocabulary, seeds):
"""Replace each run of consecutive noise tokens with a different sentinel.
The idea here is to be able to align the dropped spans in the inputs
with the markers in the targets.
We want to generate training examples like
"We hold X to be Y that" -> "X these truths Y self evident Z"
Sentinels assigned in decreasing order within the sequence starting at
vocabulary.size - 1. That is, we appropriate the last tokens in the
vocabulary for additional use as sentinels.
TODO(noam): we may want to try enlarging the vocabulary and leaving room
for the sentinels instead. However, this requires enlarging the embedding
tables in the model, so that is a bigger change.
Args:
tokens: a 1d integer Tensor
noise_mask: a boolean Tensor with the same shape as tokens
vocabulary: a vocabulary.Vocabulary
seeds: an unused int32 Tensor
Returns:
a Tensor with the same shape and dtype as tokens
"""
del seeds
prev_token_is_noise = tf.pad(noise_mask[:-1], [[1, 0]])
first_noise_tokens = tf.logical_and(
noise_mask, tf.logical_not(prev_token_is_noise))
subsequent_noise_tokens = tf.logical_and(noise_mask, prev_token_is_noise)
sentinel = sentinel_id(vocabulary) + 1 - tf.cumsum(
tf.cast(first_noise_tokens, tokens.dtype))
tokens = tf.where(first_noise_tokens, sentinel, tokens)
return tf.boolean_mask(tokens, tf.logical_not(subsequent_noise_tokens))
@gin.configurable()
def nonnoise_span_to_unique_sentinel(tokens, noise_mask, vocabulary, seeds):
return noise_span_to_unique_sentinel(
tokens, tf.logical_not(noise_mask), vocabulary, seeds)
@gin.configurable()
def drop_noise_tokens(tokens, noise_mask, vocabulary, seeds):
"""Drop noise tokens without inserting a sentinel.
Args:
tokens: a 1d integer Tensor
noise_mask: a boolean Tensor with the same shape as tokens
vocabulary: an unused vocabulary.Vocabulary
seeds: an unused int32 Tensor
Returns:
a Tensor with the same shape and dtype as tokens
"""
del vocabulary
del seeds
return tf.boolean_mask(tokens, tf.logical_not(noise_mask))
@gin.configurable()
def drop_nonnoise_tokens(tokens, noise_mask, vocabulary, seeds):
"""Drop non-noise tokens without inserting a sentinel.
Args:
tokens: a 1d integer Tensor
noise_mask: a boolean Tensor with the same shape as tokens
vocabulary: an unused vocabulary.Vocabulary
seeds: an unused int32 Tensor
Returns:
a Tensor with the same shape and dtype as tokens
"""
del vocabulary
del seeds
return tf.boolean_mask(tokens, noise_mask)
@gin.configurable()
def permute_noise_tokens(tokens, noise_mask, vocabulary, seeds):
"""Permute the noise tokens, keeping the non-noise tokens where they are.
Args:
tokens: a 1d integer Tensor
noise_mask: a boolean Tensor with the same shape as tokens
vocabulary: an unused vocabulary.Vocabulary
seeds: an int32 Tensor, sized (1, 2)
Returns:
a Tensor with the same shape and dtype as tokens
"""
del vocabulary
masked_only = tf.boolean_mask(tokens, noise_mask)
permuted = seqio.stateless_shuffle(masked_only, seeds[0])
# pad to avoid errors when it has size 0
permuted = tf.pad(permuted, [[0, 1]])
indices = tf.cumsum(tf.cast(noise_mask, tf.int32), exclusive=True)
return tf.where(noise_mask,
tf.gather(permuted, indices),
tokens)
@gin.configurable()
def noise_token_to_gathered_token(tokens, noise_mask, vocabulary, seeds):
"""Replace each noise token with a random token from the sequence.
Args:
tokens: a 1d integer Tensor
noise_mask: a boolean Tensor with the same shape as tokens
vocabulary: an unused vocabulary.Vocabulary
seeds: an int32 Tensor, sized (1, 2)
Returns:
a Tensor with the same shape and dtype as tokens
"""
del vocabulary
indices = tf.random.stateless_uniform(
shape=tf.shape(tokens),
maxval=tf.size(tokens),
dtype=tf.int32,
seed=seeds[0])
return tf.where(noise_mask,
tf.gather(tokens, indices),
tokens)
@gin.configurable()
def noise_token_to_random_token(
tokens,
noise_mask,
vocabulary,
seeds,
num_reserved_tokens=3):
"""Replace each noise token with a random token from the vocabulary.
Args:
tokens: a 1d integer Tensor
noise_mask: a boolean Tensor with the same shape as tokens
vocabulary: a vocabulary.Vocabulary
seeds: an int32 Tensor, shaped (1, 2)
num_reserved_tokens: an integer
Returns:
a Tensor with the same shape and dtype as tokens
"""
return tf.where(noise_mask,
tf.random.stateless_uniform(
tf.shape(tokens),
minval=num_reserved_tokens,
maxval=vocabulary.vocab_size,
dtype=tokens.dtype,
seed=seeds[0]),
tokens)
@gin.configurable()
def noise_token_to_random_token_or_sentinel(
tokens,
noise_mask,
vocabulary,
seeds,
random_prob=0.1):
"""Replace each noise token with a random token or a sentinel.
For each masked token, with probability random_prob, we replace it by a
random token from the vocabulary. Otherwise, we replace it with a sentinel.
Args:
tokens: a 1d integer Tensor
noise_mask: a boolean Tensor with the same shape as tokens
vocabulary: a vocabulary.Vocabulary
seeds: an int32 Tensor, shaped (2, 2).
random_prob: a float
Returns:
a Tensor with the same shape and dtype as tokens
"""
use_random = (
tf.random.stateless_uniform(tf.shape(tokens), seed=seeds[0]) <
random_prob)
return tf.where(
use_random,
noise_token_to_random_token(
tokens, noise_mask, vocabulary, seeds=seeds[1:]),
noise_token_to_sentinel(
tokens, noise_mask, vocabulary, seeds=()))
# =============== EXPERIMENTAL preprocessors (not used for the T5 paper) =======
def trim_and_pad_dataset(dataset, sequence_length):
"""A wrapper to use `seqio.utils.trim_and_pad_dataset` as a preprocessor."""
return seqio.utils.trim_and_pad_dataset(
dataset, feature_lengths=sequence_length)
def targets_for_prefix_lm_objective(dataset, sequence_length, output_features):
"""Prepares targets to be used for prefix LM objective."""
dataset = select_random_chunk(
dataset, output_features, max_length=65536, feature_key='targets')
dataset = seqio.preprocessors.append_eos(dataset, output_features)
dataset = reduce_concat_tokens(dataset, batch_size=128)
dataset = split_tokens(
dataset, max_tokens_per_segment=sequence_length['targets'])
dataset = trim_and_pad_dataset(dataset, sequence_length)
return dataset
def pack_prefix_lm_encoder_decoder(ds, sequence_length, pad_id=0):
"""Pack two examples into one with the prefix LM objective."""
packed_length = next(iter(sequence_length.values()))
assert packed_length % 2 == 0
assert all(l == packed_length for l in sequence_length.values())
@seqio.utils.map_over_dataset(num_seeds=1)
def pack_examples(example_pair, seed):
split_point = tf.random.stateless_uniform((),
minval=1,
maxval=packed_length,
seed=seed,
dtype=tf.int32)
inputs = tf.concat([
example_pair['targets'][0][:split_point],
example_pair['targets'][1][:packed_length - split_point]
],
axis=0)
inputs = tf.reshape(inputs, (packed_length,))
targets = tf.concat([
example_pair['targets'][0][split_point:],
example_pair['targets'][1][packed_length - split_point:]
],
axis=0)
targets = tf.reshape(targets, (packed_length,))
encoder_segment_ids = tf.cast(
tf.range(packed_length) >= split_point, tf.int32) + 1
decoder_segment_ids = tf.cast(
tf.range(packed_length) >= (packed_length - split_point), tf.int32) + 1
decoder_input_tokens = seqio.utils.make_autoregressive_inputs(
targets, sequence_id=decoder_segment_ids)
encoder_positions = tf.concat(
[tf.range(split_point),
tf.range(packed_length - split_point)], axis=0)
encoder_positions = tf.reshape(encoder_positions, (packed_length,))
decoder_positions = tf.concat(
[tf.range(packed_length - split_point),
tf.range(split_point)], axis=0)
decoder_positions = tf.reshape(decoder_positions, (packed_length,))
decoder_loss_weights = tf.cast(
tf.not_equal(targets, pad_id), dtype=tf.int32)
return {
'encoder_input_tokens': inputs,
'decoder_target_tokens': targets,
'decoder_input_tokens': decoder_input_tokens,
'encoder_segment_ids': encoder_segment_ids,
'encoder_positions': encoder_positions,
'decoder_segment_ids': decoder_segment_ids,
'decoder_positions': decoder_positions,
'decoder_loss_weights': decoder_loss_weights,
}
# Note that the batch requires the lengths to be the same.
return pack_examples(ds.batch(2))
def pack_prefix_lm_decoder_only(ds,
sequence_length,
loss_on_targets_only=True,
pad_id=0):
"""Randomly split the tokens for the prefix LM objective."""
packed_length = next(iter(sequence_length.values()))
assert packed_length % 2 == 0
assert all(l == packed_length for l in sequence_length.values())
@seqio.utils.map_over_dataset(num_seeds=1)
def pack_examples(example, seed):
split_point = tf.random.stateless_uniform((),
minval=1,
maxval=packed_length,
seed=seed,
dtype=tf.int32)
decoder_target_tokens = example['targets']
decoder_input_tokens = seqio.utils.make_autoregressive_inputs(
decoder_target_tokens)
if loss_on_targets_only:
decoder_loss_weights = tf.cast(
tf.range(packed_length) >= split_point, tf.int32)
else:
decoder_loss_weights = tf.ones((packed_length,), dtype=tf.int32)
padding_mask = tf.cast(
tf.not_equal(decoder_target_tokens, pad_id), dtype=tf.int32)
decoder_loss_weights *= padding_mask
decoder_causal_attention = tf.cast(
tf.range(packed_length) <= split_point, tf.int32)
return {
'decoder_target_tokens': decoder_target_tokens,
'decoder_input_tokens': decoder_input_tokens,
'decoder_loss_weights': decoder_loss_weights,
'decoder_causal_attention': decoder_causal_attention,
}
return pack_examples(ds)
|