File size: 4,998 Bytes
4557487 81de315 4557487 0173bf7 4557487 2b404b0 4f33d95 4557487 2b404b0 9258b0c 0173bf7 9258b0c 4557487 0173bf7 4557487 2b404b0 4557487 2b404b0 4557487 81de315 4557487 b3a728f 4557487 9258b0c 0173bf7 9258b0c 0173bf7 9258b0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
# /home/perk/mymodel/categorisation-mt5x/tasks.py
import functools
import seqio
import my_metrics
import tensorflow_datasets as tfds
from t5.evaluation import metrics
from t5.data import preprocessors
#import my_preprocessors
import t5
import tensorflow.compat.v1 as tf
tsv_parliament_path = {
"train": "gs://notram-public/finetune_datasets/parliament_speeches_1998_2016_frp_or_sv/train.tsv",
"validation": "gs://notram-public/finetune_datasets/parliament_speeches_1998_2016_frp_or_sv/dev.tsv",
"test": "gs://notram-public/finetune_datasets/parliament_speeches_1998_2016_frp_or_sv/test.tsv"
}
tsv_sentiment_path = {
"train": "gs://notram-public/finetune_datasets/norec_sentiment/train.tsv",
"validation": "gs://notram-public/finetune_datasets/norec_sentiment/dev.tsv",
"test": "gs://notram-public/finetune_datasets/norec_sentiment/test.tsv"
}
json_angry_tweets_path = {
"train": "gs://notram-public/finetune_datasets/angry_tweets/train.jsonl",
"validation": "gs://notram-public/finetune_datasets/angry_tweets/test.jsonl",
"test": "gs://notram-public/finetune_datasets/angry_tweets/test.jsonl"
}
tsv_angry_tweets_path = {
"train": "gs://notram-public/finetune_datasets/angry_tweets/train.tsv",
"validation": "gs://notram-public/finetune_datasets/angry_tweets/test.tsv",
"test": "gs://notram-public/finetune_datasets/angry_tweets/test.tsv"
}
tsv_dane_path = {
"train": "gs://notram-public/finetune_datasets/dane/train.tsv",
"validation": "gs://notram-public/finetune_datasets/dane/test.tsv",
"test": "gs://notram-public/finetune_datasets/dane/test.tsv"
}
tsv_dane_tokens_path = {
"train": "gs://notram-public/finetune_datasets/dane/train_tokens.tsv",
"validation": "gs://notram-public/finetune_datasets/dane/test_tokens.tsv",
"test": "gs://notram-public/finetune_datasets/dane/test_tokens.tsv"
}
vocabulary = seqio.SentencePieceVocabulary(
'gs://t5-data/vocabs/mc4.250000.100extra/sentencepiece.model', extra_ids=0)
DEFAULT_OUTPUT_FEATURES = {
"inputs":
seqio.Feature(
vocabulary=vocabulary, add_eos=True),
"targets":
seqio.Feature(
vocabulary=vocabulary, add_eos=True)
}
def categorise_preprocessor(ds):
def normalize_text(text):
"""Lowercase and remove quotes from a TensorFlow string."""
#text = tf.strings.regex_replace(text,"'(.*)'", r"\1")
...
return text
def to_inputs_and_targets(ex):
"""Map {"source": ..., "source": ...}->{"target": ..., "target": ...}."""
return {
"inputs":
tf.strings.join(
[normalize_text(ex["source"])]),
"targets":
tf.strings.join(
[normalize_text(ex["target"])]),
}
return ds.map(to_inputs_and_targets,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
seqio.TaskRegistry.add(
"parliament",
source=seqio.TextLineDataSource(
split_to_filepattern=tsv_parliament_path,
#num_input_examples=num_nq_examples
),
preprocessors=[
functools.partial(
t5.data.preprocessors.parse_tsv,
field_names=["target","source"]),
categorise_preprocessor,
seqio.preprocessors.tokenize_and_append_eos,
],
metric_fns=[metrics.accuracy,my_metrics.f1_macro],
output_features=DEFAULT_OUTPUT_FEATURES,
)
seqio.TaskRegistry.add(
"sentiment",
source=seqio.TextLineDataSource(
split_to_filepattern=tsv_sentiment_path,
#num_input_examples=num_nq_examples
),
preprocessors=[
functools.partial(
t5.data.preprocessors.parse_tsv,
field_names=["target","source"]),
categorise_preprocessor,
seqio.preprocessors.tokenize_and_append_eos,
],
metric_fns=[metrics.accuracy,my_metrics.f1_macro],
output_features=DEFAULT_OUTPUT_FEATURES,
)
seqio.TaskRegistry.add(
"angry_tweets",
source=seqio.TextLineDataSource(
split_to_filepattern=tsv_angry_tweets_path,
#num_input_examples=num_nq_examples
),
preprocessors=[
functools.partial(
t5.data.preprocessors.parse_tsv,
field_names=["target","source"]),
categorise_preprocessor,
seqio.preprocessors.tokenize_and_append_eos,
],
metric_fns=[metrics.accuracy,my_metrics.f1_macro],
output_features=DEFAULT_OUTPUT_FEATURES,
)
seqio.TaskRegistry.add(
"dane",
source=seqio.TextLineDataSource(
split_to_filepattern=tsv_dane_tokens_path,
#num_input_examples=num_nq_examples
),
preprocessors=[
functools.partial(
t5.data.preprocessors.parse_tsv,
field_names=["source","placeholder1","placeholder2","target"]),
categorise_preprocessor,
seqio.preprocessors.tokenize_and_append_eos,
],
metric_fns=[metrics.accuracy,my_metrics.f1_macro],
output_features=DEFAULT_OUTPUT_FEATURES,
)
|