File size: 4,998 Bytes
4557487
 
 
 
81de315
4557487
 
0173bf7
 
4557487
 
 
2b404b0
4f33d95
 
 
4557487
 
2b404b0
 
 
 
 
 
9258b0c
 
 
 
 
 
0173bf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9258b0c
4557487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0173bf7
 
4557487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b404b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4557487
2b404b0
4557487
 
 
 
 
 
 
 
 
81de315
4557487
b3a728f
4557487
9258b0c
 
 
0173bf7
9258b0c
 
 
 
0173bf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9258b0c
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# /home/perk/mymodel/categorisation-mt5x/tasks.py

import functools
import seqio
import my_metrics
import tensorflow_datasets as tfds
from t5.evaluation import metrics
from t5.data import preprocessors
#import my_preprocessors
import t5
import tensorflow.compat.v1 as tf

tsv_parliament_path = {
        "train": "gs://notram-public/finetune_datasets/parliament_speeches_1998_2016_frp_or_sv/train.tsv",
        "validation": "gs://notram-public/finetune_datasets/parliament_speeches_1998_2016_frp_or_sv/dev.tsv",
        "test": "gs://notram-public/finetune_datasets/parliament_speeches_1998_2016_frp_or_sv/test.tsv"
}

tsv_sentiment_path = {
        "train": "gs://notram-public/finetune_datasets/norec_sentiment/train.tsv",
        "validation": "gs://notram-public/finetune_datasets/norec_sentiment/dev.tsv",
        "test": "gs://notram-public/finetune_datasets/norec_sentiment/test.tsv"
}

json_angry_tweets_path = {
        "train": "gs://notram-public/finetune_datasets/angry_tweets/train.jsonl",
        "validation": "gs://notram-public/finetune_datasets/angry_tweets/test.jsonl",
        "test": "gs://notram-public/finetune_datasets/angry_tweets/test.jsonl"
}

tsv_angry_tweets_path = {
        "train": "gs://notram-public/finetune_datasets/angry_tweets/train.tsv",
        "validation": "gs://notram-public/finetune_datasets/angry_tweets/test.tsv",
        "test": "gs://notram-public/finetune_datasets/angry_tweets/test.tsv"
}


tsv_dane_path = {
        "train": "gs://notram-public/finetune_datasets/dane/train.tsv",
        "validation": "gs://notram-public/finetune_datasets/dane/test.tsv",
        "test": "gs://notram-public/finetune_datasets/dane/test.tsv"
}

tsv_dane_tokens_path = {
        "train": "gs://notram-public/finetune_datasets/dane/train_tokens.tsv",
        "validation": "gs://notram-public/finetune_datasets/dane/test_tokens.tsv",
        "test": "gs://notram-public/finetune_datasets/dane/test_tokens.tsv"
}


vocabulary = seqio.SentencePieceVocabulary(
                'gs://t5-data/vocabs/mc4.250000.100extra/sentencepiece.model', extra_ids=0)

DEFAULT_OUTPUT_FEATURES = {
    "inputs":
        seqio.Feature(
            vocabulary=vocabulary, add_eos=True),
    "targets":
        seqio.Feature(
            vocabulary=vocabulary, add_eos=True)
}

def categorise_preprocessor(ds):
  def normalize_text(text):
    """Lowercase and remove quotes from a TensorFlow string."""
    #text = tf.strings.regex_replace(text,"'(.*)'", r"\1")
    ...
    return text

  def to_inputs_and_targets(ex):
    """Map {"source": ..., "source": ...}->{"target": ..., "target": ...}."""
    return {
        "inputs":
             tf.strings.join(
                 [normalize_text(ex["source"])]),
        "targets": 
	    tf.strings.join(
                 [normalize_text(ex["target"])]),
    }
  return ds.map(to_inputs_and_targets, 
                num_parallel_calls=tf.data.experimental.AUTOTUNE)


seqio.TaskRegistry.add(
    "parliament",
    source=seqio.TextLineDataSource(
        split_to_filepattern=tsv_parliament_path,
        #num_input_examples=num_nq_examples
        ),
    preprocessors=[
      functools.partial(
          t5.data.preprocessors.parse_tsv,
          field_names=["target","source"]),
      categorise_preprocessor,
      seqio.preprocessors.tokenize_and_append_eos,
    ],
    metric_fns=[metrics.accuracy,my_metrics.f1_macro],
    output_features=DEFAULT_OUTPUT_FEATURES,
)   

seqio.TaskRegistry.add(
    "sentiment",
    source=seqio.TextLineDataSource(
        split_to_filepattern=tsv_sentiment_path,
        #num_input_examples=num_nq_examples
        ),
    preprocessors=[
      functools.partial(
          t5.data.preprocessors.parse_tsv,
          field_names=["target","source"]),
      categorise_preprocessor,
      seqio.preprocessors.tokenize_and_append_eos,
    ],
    metric_fns=[metrics.accuracy,my_metrics.f1_macro],
    output_features=DEFAULT_OUTPUT_FEATURES,
)   

seqio.TaskRegistry.add(
    "angry_tweets",
    source=seqio.TextLineDataSource(
        split_to_filepattern=tsv_angry_tweets_path,
        #num_input_examples=num_nq_examples
        ),
    preprocessors=[
      functools.partial(
          t5.data.preprocessors.parse_tsv,
          field_names=["target","source"]),
      categorise_preprocessor,
      seqio.preprocessors.tokenize_and_append_eos,
    ],
    metric_fns=[metrics.accuracy,my_metrics.f1_macro],
    output_features=DEFAULT_OUTPUT_FEATURES,
)   

seqio.TaskRegistry.add(
    "dane",
    source=seqio.TextLineDataSource(
        split_to_filepattern=tsv_dane_tokens_path,
        #num_input_examples=num_nq_examples
        ),
    preprocessors=[
      functools.partial(
          t5.data.preprocessors.parse_tsv,
          field_names=["source","placeholder1","placeholder2","target"]),
      categorise_preprocessor,
      seqio.preprocessors.tokenize_and_append_eos,
    ],
    metric_fns=[metrics.accuracy,my_metrics.f1_macro],
    output_features=DEFAULT_OUTPUT_FEATURES,
)