File size: 4,862 Bytes
05cd399 6ff8284 05cd399 61f309d 05cd399 4d857d2 041a858 4d857d2 05cd399 041a858 05cd399 cbd10a7 05cd399 abe9b79 05cd399 32b61af 05cd399 c9b3a0a 343278c 598a076 e73c2c5 598a076 4d857d2 e73c2c5 343278c 598a076 05cd399 041a858 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
# /home/perk/mymodel/categorisation-mt5x/tasks.py
import functools
import seqio
import tensorflow_datasets as tfds
from t5.evaluation import metrics
import my_metrics
from t5.data import preprocessors
import t5
import tensorflow.compat.v1 as tf
tsv_path = {
"train": "gs://eu-jav-t5x/corpus/labeled/datasetA_train_3categories.tsv",
"validation": "gs://eu-jav-t5x/corpus/labeled/datasetA_dev_3categories.tsv",
"test": "gs://eu-jav-t5x/corpus/labeled/ datasetA_test_3categories.tsv"
}
vocabulary = seqio.SentencePieceVocabulary(
'gs://t5-data/vocabs/mc4.250000.100extra/sentencepiece.model', extra_ids=0)
DEFAULT_OUTPUT_FEATURES = {
"inputs":
seqio.Feature(
vocabulary=vocabulary, add_eos=True),
"targets":
seqio.Feature(
vocabulary=vocabulary, add_eos=True)
}
def categorise_preprocessor(ds):
def normalize_text(text):
"""Lowercase and remove quotes from a TensorFlow string."""
text = tf.strings.regex_replace(text,"'(.*)'", r"\1")
return text
def to_inputs_and_targets(ex):
"""Map {"source": ..., "source": ...}->{"target": ..., "target": ...}."""
return {
"inputs":
tf.strings.join(
[normalize_text(ex["source"])]),
"targets":
tf.strings.join(
[normalize_text(ex["target"])]),
}
return ds.map(to_inputs_and_targets,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
def categorise_fulltext_preprocessor(ds):
def normalize_text(text):
"""Lowercase and remove quotes from a TensorFlow string."""
text = tf.strings.regex_replace(text,"'(.*)'", r"\1")
return text
def fulltext(t):
if t=="0":
t="il testo è favorevole alla vaccinazione"
elif t=="1":
t="il testo è neutro rispetto alla vaccinazione"
elif t=="2":
t="is testo è sfavorevole alla vaccinazione"
return t
def to_inputs_and_targets(ex):
"""Map {"source": ..., "source": ...}->{"target": ..., "target": ...}."""
return {
"inputs":
tf.strings.join(
[normalize_text(ex["source"])]),
"targets":
tf.strings.join(
[fulltext(normalize_text(ex["target"]))]),
}
return ds.map(to_inputs_and_targets,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
def categorise_fulltext_word_preprocessor(ds):
def normalize_text(text):
"""Lowercase and remove quotes from a TensorFlow string."""
text = tf.strings.regex_replace(text,"'(.*)'", r"\1")
return text
def fulltext(t):
if t=="0":
t="promozionale"
elif t=="1":
t="neutro"
elif t=="2":
t="scoraggiante"
return t
def to_inputs_and_targets(ex):
"""Map {"source": ..., "source": ...}->{"target": ..., "target": ...}."""
return {
"inputs":
tf.strings.join(
[normalize_text(ex["source"])]),
"targets":
tf.strings.join(
[fulltext(normalize_text(ex["target"]))]),
}
return ds.map(to_inputs_and_targets,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
seqio.TaskRegistry.add(
"classify_tweets",
source=seqio.TextLineDataSource(
split_to_filepattern=tsv_path,
#num_input_examples=num_nq_examples
),
preprocessors=[
functools.partial(
t5.data.preprocessors.parse_tsv,
field_names=["annotator1","annotator2","annotator3","target","source","id"]),
categorise_preprocessor,
seqio.preprocessors.tokenize_and_append_eos,
],
metric_fns=[metrics.accuracy,my_metrics.f1_macro],
output_features=DEFAULT_OUTPUT_FEATURES,
)
seqio.TaskRegistry.add(
"classify_tweets_fulltext",
source=seqio.TextLineDataSource(
split_to_filepattern=tsv_path,
#num_input_examples=num_nq_examples
),
preprocessors=[
functools.partial(
t5.data.preprocessors.parse_tsv,
field_names=["annotator1","annotator2","annotator3","target","source","id"]),
categorise_fulltext_preprocessor,
seqio.preprocessors.tokenize_and_append_eos,
],
metric_fns=[metrics.accuracy,my_metrics.f1_macro],
output_features=DEFAULT_OUTPUT_FEATURES,
)
seqio.TaskRegistry.add(
"classify_tweets_fulltext_word",
source=seqio.TextLineDataSource(
split_to_filepattern=tsv_path,
#num_input_examples=num_nq_examples
),
preprocessors=[
functools.partial(
t5.data.preprocessors.parse_tsv,
field_names=["annotator1","annotator2","annotator3","target","source","id"]),
categorise_fulltext_word_preprocessor,
seqio.preprocessors.tokenize_and_append_eos,
],
metric_fns=[metrics.accuracy,my_metrics.f1_macro],
output_features=DEFAULT_OUTPUT_FEATURES,
)
|