File size: 9,243 Bytes
cd5fcb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#

'''
SICK Relatedness and Entailment
'''
from __future__ import absolute_import, division, unicode_literals

import os
import io
import logging
import numpy as np

from sklearn.metrics import mean_squared_error
from scipy.stats import pearsonr, spearmanr

from senteval.tools.relatedness import RelatednessPytorch
from senteval.tools.validation import SplitClassifier

class SICKEval(object):
    def __init__(self, task_path, seed=1111):
        logging.debug('***** Transfer task : SICK-Relatedness*****\n\n')
        self.seed = seed
        train = self.loadFile(os.path.join(task_path, 'SICK_train.txt'))
        dev = self.loadFile(os.path.join(task_path, 'SICK_trial.txt'))
        test = self.loadFile(os.path.join(task_path, 'SICK_test_annotated.txt'))
        self.sick_data = {'train': train, 'dev': dev, 'test': test}

    def do_prepare(self, params, prepare):
        samples = self.sick_data['train']['X_A'] + \
                  self.sick_data['train']['X_B'] + \
                  self.sick_data['dev']['X_A'] + \
                  self.sick_data['dev']['X_B'] + \
                  self.sick_data['test']['X_A'] + self.sick_data['test']['X_B']
        return prepare(params, samples)

    def loadFile(self, fpath):
        skipFirstLine = True
        sick_data = {'X_A': [], 'X_B': [], 'y': []}
        with io.open(fpath, 'r', encoding='utf-8') as f:
            for line in f:
                if skipFirstLine:
                    skipFirstLine = False
                else:
                    text = line.strip().split('\t')
                    sick_data['X_A'].append(text[1].split())
                    sick_data['X_B'].append(text[2].split())
                    sick_data['y'].append(text[3])

        sick_data['y'] = [float(s) for s in sick_data['y']]
        return sick_data

    def run(self, params, batcher):
        sick_embed = {'train': {}, 'dev': {}, 'test': {}}
        bsize = params.batch_size

        for key in self.sick_data:
            logging.info('Computing embedding for {0}'.format(key))
            # Sort to reduce padding
            sorted_corpus = sorted(zip(self.sick_data[key]['X_A'],
                                       self.sick_data[key]['X_B'],
                                       self.sick_data[key]['y']),
                                   key=lambda z: (len(z[0]), len(z[1]), z[2]))

            self.sick_data[key]['X_A'] = [x for (x, y, z) in sorted_corpus]
            self.sick_data[key]['X_B'] = [y for (x, y, z) in sorted_corpus]
            self.sick_data[key]['y'] = [z for (x, y, z) in sorted_corpus]

            for txt_type in ['X_A', 'X_B']:
                sick_embed[key][txt_type] = []
                for ii in range(0, len(self.sick_data[key]['y']), bsize):
                    batch = self.sick_data[key][txt_type][ii:ii + bsize]
                    embeddings = batcher(params, batch)
                    sick_embed[key][txt_type].append(embeddings)
                sick_embed[key][txt_type] = np.vstack(sick_embed[key][txt_type])
            sick_embed[key]['y'] = np.array(self.sick_data[key]['y'])
            logging.info('Computed {0} embeddings'.format(key))

        # Train
        trainA = sick_embed['train']['X_A']
        trainB = sick_embed['train']['X_B']
        trainF = np.c_[np.abs(trainA - trainB), trainA * trainB]
        trainY = self.encode_labels(self.sick_data['train']['y'])

        # Dev
        devA = sick_embed['dev']['X_A']
        devB = sick_embed['dev']['X_B']
        devF = np.c_[np.abs(devA - devB), devA * devB]
        devY = self.encode_labels(self.sick_data['dev']['y'])

        # Test
        testA = sick_embed['test']['X_A']
        testB = sick_embed['test']['X_B']
        testF = np.c_[np.abs(testA - testB), testA * testB]
        testY = self.encode_labels(self.sick_data['test']['y'])

        config = {'seed': self.seed, 'nclasses': 5}
        clf = RelatednessPytorch(train={'X': trainF, 'y': trainY},
                                 valid={'X': devF, 'y': devY},
                                 test={'X': testF, 'y': testY},
                                 devscores=self.sick_data['dev']['y'],
                                 config=config)

        devspr, yhat = clf.run()

        pr = pearsonr(yhat, self.sick_data['test']['y'])[0]
        sr = spearmanr(yhat, self.sick_data['test']['y'])[0]
        pr = 0 if pr != pr else pr
        sr = 0 if sr != sr else sr
        se = mean_squared_error(yhat, self.sick_data['test']['y'])
        logging.debug('Dev : Spearman {0}'.format(devspr))
        logging.debug('Test : Pearson {0} Spearman {1} MSE {2} \
                       for SICK Relatedness\n'.format(pr, sr, se))

        return {'devspearman': devspr, 'pearson': pr, 'spearman': sr, 'mse': se,
                'yhat': yhat, 'ndev': len(devA), 'ntest': len(testA)}

    def encode_labels(self, labels, nclass=5):
        """
        Label encoding from Tree LSTM paper (Tai, Socher, Manning)
        """
        Y = np.zeros((len(labels), nclass)).astype('float32')
        for j, y in enumerate(labels):
            for i in range(nclass):
                if i+1 == np.floor(y) + 1:
                    Y[j, i] = y - np.floor(y)
                if i+1 == np.floor(y):
                    Y[j, i] = np.floor(y) - y + 1
        return Y


class SICKEntailmentEval(SICKEval):
    def __init__(self, task_path, seed=1111):
        logging.debug('***** Transfer task : SICK-Entailment*****\n\n')
        self.seed = seed
        train = self.loadFile(os.path.join(task_path, 'SICK_train.txt'))
        dev = self.loadFile(os.path.join(task_path, 'SICK_trial.txt'))
        test = self.loadFile(os.path.join(task_path, 'SICK_test_annotated.txt'))
        self.sick_data = {'train': train, 'dev': dev, 'test': test}

    def loadFile(self, fpath):
        label2id = {'CONTRADICTION': 0, 'NEUTRAL': 1, 'ENTAILMENT': 2}
        skipFirstLine = True
        sick_data = {'X_A': [], 'X_B': [], 'y': []}
        with io.open(fpath, 'r', encoding='utf-8') as f:
            for line in f:
                if skipFirstLine:
                    skipFirstLine = False
                else:
                    text = line.strip().split('\t')
                    sick_data['X_A'].append(text[1].split())
                    sick_data['X_B'].append(text[2].split())
                    sick_data['y'].append(text[4])
        sick_data['y'] = [label2id[s] for s in sick_data['y']]
        return sick_data

    def run(self, params, batcher):
        sick_embed = {'train': {}, 'dev': {}, 'test': {}}
        bsize = params.batch_size

        for key in self.sick_data:
            logging.info('Computing embedding for {0}'.format(key))
            # Sort to reduce padding
            sorted_corpus = sorted(zip(self.sick_data[key]['X_A'],
                                       self.sick_data[key]['X_B'],
                                       self.sick_data[key]['y']),
                                   key=lambda z: (len(z[0]), len(z[1]), z[2]))

            self.sick_data[key]['X_A'] = [x for (x, y, z) in sorted_corpus]
            self.sick_data[key]['X_B'] = [y for (x, y, z) in sorted_corpus]
            self.sick_data[key]['y'] = [z for (x, y, z) in sorted_corpus]

            for txt_type in ['X_A', 'X_B']:
                sick_embed[key][txt_type] = []
                for ii in range(0, len(self.sick_data[key]['y']), bsize):
                    batch = self.sick_data[key][txt_type][ii:ii + bsize]
                    embeddings = batcher(params, batch)
                    sick_embed[key][txt_type].append(embeddings)
                sick_embed[key][txt_type] = np.vstack(sick_embed[key][txt_type])
            logging.info('Computed {0} embeddings'.format(key))

        # Train
        trainA = sick_embed['train']['X_A']
        trainB = sick_embed['train']['X_B']
        trainF = np.c_[np.abs(trainA - trainB), trainA * trainB]
        trainY = np.array(self.sick_data['train']['y'])

        # Dev
        devA = sick_embed['dev']['X_A']
        devB = sick_embed['dev']['X_B']
        devF = np.c_[np.abs(devA - devB), devA * devB]
        devY = np.array(self.sick_data['dev']['y'])

        # Test
        testA = sick_embed['test']['X_A']
        testB = sick_embed['test']['X_B']
        testF = np.c_[np.abs(testA - testB), testA * testB]
        testY = np.array(self.sick_data['test']['y'])

        config = {'nclasses': 3, 'seed': self.seed,
                  'usepytorch': params.usepytorch,
                  'classifier': params.classifier,
                  'nhid': params.nhid}
        clf = SplitClassifier(X={'train': trainF, 'valid': devF, 'test': testF},
                              y={'train': trainY, 'valid': devY, 'test': testY},
                              config=config)

        devacc, testacc = clf.run()
        logging.debug('\nDev acc : {0} Test acc : {1} for \
                       SICK entailment\n'.format(devacc, testacc))
        return {'devacc': devacc, 'acc': testacc,
                'ndev': len(devA), 'ntest': len(testA)}