File size: 21,354 Bytes
786f6a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 |
""" Class-Attention in Image Transformers (CaiT)
Paper: 'Going deeper with Image Transformers' - https://arxiv.org/abs/2103.17239
Original code and weights from https://github.com/facebookresearch/deit, copyright below
Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman
"""
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
from functools import partial
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import PatchEmbed, Mlp, DropPath, trunc_normal_, use_fused_attn
from ._builder import build_model_with_cfg
from ._features import feature_take_indices
from ._manipulate import checkpoint_seq
from ._registry import register_model, generate_default_cfgs
__all__ = ['Cait', 'ClassAttn', 'LayerScaleBlockClassAttn', 'LayerScaleBlock', 'TalkingHeadAttn']
class ClassAttn(nn.Module):
# taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
# with slight modifications to do CA
fused_attn: torch.jit.Final[bool]
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.fused_attn = use_fused_attn()
self.q = nn.Linear(dim, dim, bias=qkv_bias)
self.k = nn.Linear(dim, dim, bias=qkv_bias)
self.v = nn.Linear(dim, dim, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
q = self.q(x[:, 0]).unsqueeze(1).reshape(B, 1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
k = self.k(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
v = self.v(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
if self.fused_attn:
x_cls = torch.nn.functional.scaled_dot_product_attention(
q, k, v,
dropout_p=self.attn_drop.p if self.training else 0.,
)
else:
q = q * self.scale
attn = q @ k.transpose(-2, -1)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x_cls = attn @ v
x_cls = x_cls.transpose(1, 2).reshape(B, 1, C)
x_cls = self.proj(x_cls)
x_cls = self.proj_drop(x_cls)
return x_cls
class LayerScaleBlockClassAttn(nn.Module):
# taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
# with slight modifications to add CA and LayerScale
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
proj_drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
attn_block=ClassAttn,
mlp_block=Mlp,
init_values=1e-4,
):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = attn_block(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=proj_drop,
)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = mlp_block(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=proj_drop,
)
self.gamma_1 = nn.Parameter(init_values * torch.ones(dim))
self.gamma_2 = nn.Parameter(init_values * torch.ones(dim))
def forward(self, x, x_cls):
u = torch.cat((x_cls, x), dim=1)
x_cls = x_cls + self.drop_path(self.gamma_1 * self.attn(self.norm1(u)))
x_cls = x_cls + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x_cls)))
return x_cls
class TalkingHeadAttn(nn.Module):
# taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
# with slight modifications to add Talking Heads Attention (https://arxiv.org/pdf/2003.02436v1.pdf)
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_l = nn.Linear(num_heads, num_heads)
self.proj_w = nn.Linear(num_heads, num_heads)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
attn = q @ k.transpose(-2, -1)
attn = self.proj_l(attn.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
attn = attn.softmax(dim=-1)
attn = self.proj_w(attn.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class LayerScaleBlock(nn.Module):
# taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
# with slight modifications to add layerScale
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
proj_drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
attn_block=TalkingHeadAttn,
mlp_block=Mlp,
init_values=1e-4,
):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = attn_block(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=proj_drop,
)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = mlp_block(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=proj_drop,
)
self.gamma_1 = nn.Parameter(init_values * torch.ones(dim))
self.gamma_2 = nn.Parameter(init_values * torch.ones(dim))
def forward(self, x):
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
return x
class Cait(nn.Module):
# taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
# with slight modifications to adapt to our cait models
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
num_classes=1000,
global_pool='token',
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.,
qkv_bias=True,
drop_rate=0.,
pos_drop_rate=0.,
proj_drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
block_layers=LayerScaleBlock,
block_layers_token=LayerScaleBlockClassAttn,
patch_layer=PatchEmbed,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
act_layer=nn.GELU,
attn_block=TalkingHeadAttn,
mlp_block=Mlp,
init_values=1e-4,
attn_block_token_only=ClassAttn,
mlp_block_token_only=Mlp,
depth_token_only=2,
mlp_ratio_token_only=4.0
):
super().__init__()
assert global_pool in ('', 'token', 'avg')
self.num_classes = num_classes
self.global_pool = global_pool
self.num_features = self.embed_dim = embed_dim
self.grad_checkpointing = False
self.patch_embed = patch_layer(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
)
num_patches = self.patch_embed.num_patches
r = self.patch_embed.feat_ratio() if hasattr(self.patch_embed, 'feat_ratio') else patch_size
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
self.pos_drop = nn.Dropout(p=pos_drop_rate)
dpr = [drop_path_rate for i in range(depth)]
self.blocks = nn.Sequential(*[block_layers(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
proj_drop=proj_drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
act_layer=act_layer,
attn_block=attn_block,
mlp_block=mlp_block,
init_values=init_values,
) for i in range(depth)])
self.feature_info = [dict(num_chs=embed_dim, reduction=r, module=f'blocks.{i}') for i in range(depth)]
self.blocks_token_only = nn.ModuleList([block_layers_token(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio_token_only,
qkv_bias=qkv_bias,
norm_layer=norm_layer,
act_layer=act_layer,
attn_block=attn_block_token_only,
mlp_block=mlp_block_token_only,
init_values=init_values,
) for _ in range(depth_token_only)])
self.norm = norm_layer(embed_dim)
self.head_drop = nn.Dropout(drop_rate)
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.grad_checkpointing = enable
@torch.jit.ignore
def group_matcher(self, coarse=False):
def _matcher(name):
if any([name.startswith(n) for n in ('cls_token', 'pos_embed', 'patch_embed')]):
return 0
elif name.startswith('blocks.'):
return int(name.split('.')[1]) + 1
elif name.startswith('blocks_token_only.'):
# overlap token only blocks with last blocks
to_offset = len(self.blocks) - len(self.blocks_token_only) + 1
return int(name.split('.')[1]) + to_offset
elif name.startswith('norm.'):
return len(self.blocks)
else:
return float('inf')
return _matcher
@torch.jit.ignore
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=None):
self.num_classes = num_classes
if global_pool is not None:
assert global_pool in ('', 'token', 'avg')
self.global_pool = global_pool
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
def forward_intermediates(
self,
x: torch.Tensor,
indices: Optional[Union[int, List[int], Tuple[int]]] = None,
norm: bool = False,
stop_early: bool = True,
output_fmt: str = 'NCHW',
intermediates_only: bool = False,
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
""" Forward features that returns intermediates.
Args:
x: Input image tensor
indices: Take last n blocks if int, all if None, select matching indices if sequence
norm: Apply norm layer to all intermediates
stop_early: Stop iterating over blocks when last desired intermediate hit
output_fmt: Shape of intermediate feature outputs
intermediates_only: Only return intermediate features
"""
assert output_fmt in ('NCHW', 'NLC'), 'Output format for ViT features must be one of NCHW or NLC.'
reshape = output_fmt == 'NCHW'
intermediates = []
take_indices, max_index = feature_take_indices(len(self.blocks), indices)
# forward pass
B, _, height, width = x.shape
x = self.patch_embed(x)
x = x + self.pos_embed
x = self.pos_drop(x)
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
blocks = self.blocks
else:
blocks = self.blocks[:max_index + 1]
for i, blk in enumerate(blocks):
x = blk(x)
if i in take_indices:
# normalize intermediates with final norm layer if enabled
intermediates.append(self.norm(x) if norm else x)
# process intermediates
if reshape:
# reshape to BCHW output format
H, W = self.patch_embed.dynamic_feat_size((height, width))
intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates]
if intermediates_only:
return intermediates
# NOTE not supporting return of class tokens
cls_tokens = self.cls_token.expand(x.shape[0], -1, -1)
for i, blk in enumerate(self.blocks_token_only):
cls_tokens = blk(x, cls_tokens)
x = torch.cat((cls_tokens, x), dim=1)
x = self.norm(x)
return x, intermediates
def prune_intermediate_layers(
self,
n: Union[int, List[int], Tuple[int]] = 1,
prune_norm: bool = False,
prune_head: bool = True,
):
""" Prune layers not required for specified intermediates.
"""
take_indices, max_index = feature_take_indices(len(self.blocks), n)
self.blocks = self.blocks[:max_index + 1] # truncate blocks
if prune_norm:
self.norm = nn.Identity()
if prune_head:
self.blocks_token_only = nn.ModuleList() # prune token blocks with head
self.head = nn.Identity()
return take_indices
def forward_features(self, x):
x = self.patch_embed(x)
x = x + self.pos_embed
x = self.pos_drop(x)
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint_seq(self.blocks, x)
else:
x = self.blocks(x)
cls_tokens = self.cls_token.expand(x.shape[0], -1, -1)
for i, blk in enumerate(self.blocks_token_only):
cls_tokens = blk(x, cls_tokens)
x = torch.cat((cls_tokens, x), dim=1)
x = self.norm(x)
return x
def forward_head(self, x, pre_logits: bool = False):
if self.global_pool:
x = x[:, 1:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0]
x = self.head_drop(x)
return x if pre_logits else self.head(x)
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def checkpoint_filter_fn(state_dict, model=None):
if 'model' in state_dict:
state_dict = state_dict['model']
checkpoint_no_module = {}
for k, v in state_dict.items():
checkpoint_no_module[k.replace('module.', '')] = v
return checkpoint_no_module
def _create_cait(variant, pretrained=False, **kwargs):
out_indices = kwargs.pop('out_indices', 3)
model = build_model_with_cfg(
Cait,
variant,
pretrained,
pretrained_filter_fn=checkpoint_filter_fn,
feature_cfg=dict(out_indices=out_indices, feature_cls='getter'),
**kwargs,
)
return model
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 384, 384), 'pool_size': None,
'crop_pct': 1.0, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = generate_default_cfgs({
'cait_xxs24_224.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/XXS24_224.pth',
input_size=(3, 224, 224),
),
'cait_xxs24_384.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/XXS24_384.pth',
),
'cait_xxs36_224.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/XXS36_224.pth',
input_size=(3, 224, 224),
),
'cait_xxs36_384.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/XXS36_384.pth',
),
'cait_xs24_384.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/XS24_384.pth',
),
'cait_s24_224.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/S24_224.pth',
input_size=(3, 224, 224),
),
'cait_s24_384.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/S24_384.pth',
),
'cait_s36_384.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/S36_384.pth',
),
'cait_m36_384.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/M36_384.pth',
),
'cait_m48_448.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/M48_448.pth',
input_size=(3, 448, 448),
),
})
@register_model
def cait_xxs24_224(pretrained=False, **kwargs) -> Cait:
model_args = dict(patch_size=16, embed_dim=192, depth=24, num_heads=4, init_values=1e-5)
model = _create_cait('cait_xxs24_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def cait_xxs24_384(pretrained=False, **kwargs) -> Cait:
model_args = dict(patch_size=16, embed_dim=192, depth=24, num_heads=4, init_values=1e-5)
model = _create_cait('cait_xxs24_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def cait_xxs36_224(pretrained=False, **kwargs) -> Cait:
model_args = dict(patch_size=16, embed_dim=192, depth=36, num_heads=4, init_values=1e-5)
model = _create_cait('cait_xxs36_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def cait_xxs36_384(pretrained=False, **kwargs) -> Cait:
model_args = dict(patch_size=16, embed_dim=192, depth=36, num_heads=4, init_values=1e-5)
model = _create_cait('cait_xxs36_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def cait_xs24_384(pretrained=False, **kwargs) -> Cait:
model_args = dict(patch_size=16, embed_dim=288, depth=24, num_heads=6, init_values=1e-5)
model = _create_cait('cait_xs24_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def cait_s24_224(pretrained=False, **kwargs) -> Cait:
model_args = dict(patch_size=16, embed_dim=384, depth=24, num_heads=8, init_values=1e-5)
model = _create_cait('cait_s24_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def cait_s24_384(pretrained=False, **kwargs) -> Cait:
model_args = dict(patch_size=16, embed_dim=384, depth=24, num_heads=8, init_values=1e-5)
model = _create_cait('cait_s24_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def cait_s36_384(pretrained=False, **kwargs) -> Cait:
model_args = dict(patch_size=16, embed_dim=384, depth=36, num_heads=8, init_values=1e-6)
model = _create_cait('cait_s36_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def cait_m36_384(pretrained=False, **kwargs) -> Cait:
model_args = dict(patch_size=16, embed_dim=768, depth=36, num_heads=16, init_values=1e-6)
model = _create_cait('cait_m36_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def cait_m48_448(pretrained=False, **kwargs) -> Cait:
model_args = dict(patch_size=16, embed_dim=768, depth=48, num_heads=16, init_values=1e-6)
model = _create_cait('cait_m48_448', pretrained=pretrained, **dict(model_args, **kwargs))
return model
|