File size: 4,260 Bytes
2571f24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import torch


def fake_decorator(*a, **k):
    if len(a) == 1 and not k:
        return a[0]
    else:
        return fake_decorator


def make_list(x, n=None, **kwargs):
    """Ensure that the input  is a list (of a given size)

    Parameters
    ----------
    x : list or tuple or scalar
        Input object
    n : int, optional
        Required length
    default : scalar, optional
        Value to right-pad with. Use last value of the input by default.

    Returns
    -------
    x : list
    """
    if not isinstance(x, (list, tuple)):
        x = [x]
    x = list(x)
    if n and len(x) < n:
        default = kwargs.get('default', x[-1])
        x = x + [default] * max(0, n - len(x))
    return x


def expanded_shape(*shapes, side='left'):
    """Expand input shapes according to broadcasting rules

    Parameters
    ----------
    *shapes : sequence[int]
        Input shapes
    side : {'left', 'right'}, default='left'
        Side to add singleton dimensions.

    Returns
    -------
    shape : tuple[int]
        Output shape

    Raises
    ------
    ValueError
        If shapes are not compatible for broadcast.

    """
    def error(s0, s1):
        raise ValueError('Incompatible shapes for broadcasting: {} and {}.'
                         .format(s0, s1))

    # 1. nb dimensions
    nb_dim = 0
    for shape in shapes:
        nb_dim = max(nb_dim, len(shape))

    # 2. enumerate
    shape = [1] * nb_dim
    for i, shape1 in enumerate(shapes):
        pad_size = nb_dim - len(shape1)
        ones = [1] * pad_size
        if side == 'left':
            shape1 = [*ones, *shape1]
        else:
            shape1 = [*shape1, *ones]
        shape = [max(s0, s1) if s0 == 1 or s1 == 1 or s0 == s1
                 else error(s0, s1) for s0, s1 in zip(shape, shape1)]

    return tuple(shape)


def matvec(mat, vec, out=None):
    """Matrix-vector product (supports broadcasting)

    Parameters
    ----------
    mat : (..., M, N) tensor
        Input matrix.
    vec : (..., N) tensor
        Input vector.
    out : (..., M) tensor, optional
        Placeholder for the output tensor.

    Returns
    -------
    mv : (..., M) tensor
        Matrix vector product of the inputs

    """
    vec = vec[..., None]
    if out is not None:
        out = out[..., None]

    mv = torch.matmul(mat, vec, out=out)
    mv = mv[..., 0]
    if out is not None:
        out = out[..., 0]

    return mv


def _compare_versions(version1, mode, version2):
    for v1, v2 in zip(version1, version2):
        if mode in ('gt', '>'):
            if v1 > v2:
                return True
            elif v1 < v2:
                return False
        elif mode in ('ge', '>='):
            if v1 > v2:
                return True
            elif v1 < v2:
                return False
        elif mode in ('lt', '<'):
            if v1 < v2:
                return True
            elif v1 > v2:
                return False
        elif mode in ('le', '<='):
            if v1 < v2:
                return True
            elif v1 > v2:
                return False
    if mode in ('gt', 'lt', '>', '<'):
        return False
    else:
        return True


def torch_version(mode, version):
    """Check torch version

    Parameters
    ----------
    mode : {'<', '<=', '>', '>='}
    version : tuple[int]

    Returns
    -------
    True if "torch.version <mode> version"

    """
    current_version, *cuda_variant = torch.__version__.split('+')
    major, minor, patch, *_ = current_version.split('.')
    # strip alpha tags
    for x in 'abcdefghijklmnopqrstuvwxy':
        if x in patch:
            patch = patch[:patch.index(x)]
    current_version = (int(major), int(minor), int(patch))
    version = make_list(version)
    return _compare_versions(current_version, mode, version)


if torch_version('>=', (1, 10)):
    meshgrid_ij = lambda *x: torch.meshgrid(*x, indexing='ij')
    meshgrid_xy = lambda *x: torch.meshgrid(*x, indexing='xy')
else:
    meshgrid_ij = lambda *x: torch.meshgrid(*x)
    def meshgrid_xy(*x):
        grid = list(torch.meshgrid(*x))
        if len(grid) > 1:
            grid[0] = grid[0].transpose(0, 1)
            grid[1] = grid[1].transpose(0, 1)
        return grid


meshgrid = meshgrid_ij