File size: 12,052 Bytes
2571f24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
"""
Non-differentiable forward/backward components.
These components are put together in `interpol.autograd` to generate
differentiable functions.
Note
----
.. I removed @torch.jit.script from these entry-points because compiling
all possible combinations of bound+interpolation made the first call
extremely slow.
.. I am not using the dot/multi_dot helpers even though they should be
more efficient that "multiply and sum" because I haven't had the time
to test them. It would be worth doing it.
"""
import torch
from typing import List, Optional, Tuple
from .jit_utils import list_all, dot, dot_multi, pad_list_int
from .bounds import Bound
from .splines import Spline
from . import iso0, iso1, nd
Tensor = torch.Tensor
@torch.jit.script
def make_bound(bound: List[int]) -> List[Bound]:
return [Bound(b) for b in bound]
@torch.jit.script
def make_spline(spline: List[int]) -> List[Spline]:
return [Spline(s) for s in spline]
# @torch.jit.script
def grid_pull(inp, grid, bound: List[int], interpolation: List[int],
extrapolate: int):
"""
inp: (B, C, *spatial_in) tensor
grid: (B, *spatial_out, D) tensor
bound: List{D}[int] tensor
interpolation: List{D}[int]
extrapolate: int
returns: (B, C, *spatial_out) tensor
"""
dim = grid.shape[-1]
bound = pad_list_int(bound, dim)
interpolation = pad_list_int(interpolation, dim)
bound_fn = make_bound(bound)
is_iso1 = list_all([order == 1 for order in interpolation])
if is_iso1:
if dim == 3:
return iso1.pull3d(inp, grid, bound_fn, extrapolate)
elif dim == 2:
return iso1.pull2d(inp, grid, bound_fn, extrapolate)
elif dim == 1:
return iso1.pull1d(inp, grid, bound_fn, extrapolate)
is_iso0 = list_all([order == 0 for order in interpolation])
if is_iso0:
if dim == 3:
return iso0.pull3d(inp, grid, bound_fn, extrapolate)
elif dim == 2:
return iso0.pull2d(inp, grid, bound_fn, extrapolate)
elif dim == 1:
return iso0.pull1d(inp, grid, bound_fn, extrapolate)
spline_fn = make_spline(interpolation)
return nd.pull(inp, grid, bound_fn, spline_fn, extrapolate)
# @torch.jit.script
def grid_push(inp, grid, shape: Optional[List[int]], bound: List[int],
interpolation: List[int], extrapolate: int):
"""
inp: (B, C, *spatial_in) tensor
grid: (B, *spatial_in, D) tensor
shape: List{D}[int] tensor, optional, default=spatial_in
bound: List{D}[int] tensor
interpolation: List{D}[int]
extrapolate: int
returns: (B, C, *shape) tensor
"""
dim = grid.shape[-1]
bound = pad_list_int(bound, dim)
interpolation = pad_list_int(interpolation, dim)
bound_fn = make_bound(bound)
is_iso1 = list_all([order == 1 for order in interpolation])
if is_iso1:
if dim == 3:
return iso1.push3d(inp, grid, shape, bound_fn, extrapolate)
elif dim == 2:
return iso1.push2d(inp, grid, shape, bound_fn, extrapolate)
elif dim == 1:
return iso1.push1d(inp, grid, shape, bound_fn, extrapolate)
is_iso0 = list_all([order == 0 for order in interpolation])
if is_iso0:
if dim == 3:
return iso0.push3d(inp, grid, shape, bound_fn, extrapolate)
elif dim == 2:
return iso0.push2d(inp, grid, shape, bound_fn, extrapolate)
elif dim == 1:
return iso0.push1d(inp, grid, shape, bound_fn, extrapolate)
spline_fn = make_spline(interpolation)
return nd.push(inp, grid, shape, bound_fn, spline_fn, extrapolate)
# @torch.jit.script
def grid_count(grid, shape: Optional[List[int]], bound: List[int],
interpolation: List[int], extrapolate: int):
"""
grid: (B, *spatial_in, D) tensor
shape: List{D}[int] tensor, optional, default=spatial_in
bound: List{D}[int] tensor
interpolation: List{D}[int]
extrapolate: int
returns: (B, 1, *shape) tensor
"""
dim = grid.shape[-1]
bound = pad_list_int(bound, dim)
interpolation = pad_list_int(interpolation, dim)
bound_fn = make_bound(bound)
gshape = list(grid.shape[-dim-1:-1])
if shape is None:
shape = gshape
inp = torch.ones([], dtype=grid.dtype, device=grid.device)
inp = inp.expand([len(grid), 1] + gshape)
is_iso1 = list_all([order == 1 for order in interpolation])
if is_iso1:
if dim == 3:
return iso1.push3d(inp, grid, shape, bound_fn, extrapolate)
elif dim == 2:
return iso1.push2d(inp, grid, shape, bound_fn, extrapolate)
elif dim == 1:
return iso1.push1d(inp, grid, shape, bound_fn, extrapolate)
is_iso0 = list_all([order == 0 for order in interpolation])
if is_iso0:
if dim == 3:
return iso0.push3d(inp, grid, shape, bound_fn, extrapolate)
elif dim == 2:
return iso0.push2d(inp, grid, shape, bound_fn, extrapolate)
elif dim == 1:
return iso0.push1d(inp, grid, shape, bound_fn, extrapolate)
spline_fn = make_spline(interpolation)
return nd.push(inp, grid, shape, bound_fn, spline_fn, extrapolate)
# @torch.jit.script
def grid_grad(inp, grid, bound: List[int], interpolation: List[int],
extrapolate: int):
"""
inp: (B, C, *spatial_in) tensor
grid: (B, *spatial_out, D) tensor
bound: List{D}[int] tensor
interpolation: List{D}[int]
extrapolate: int
returns: (B, C, *spatial_out, D) tensor
"""
dim = grid.shape[-1]
bound = pad_list_int(bound, dim)
interpolation = pad_list_int(interpolation, dim)
bound_fn = make_bound(bound)
is_iso1 = list_all([order == 1 for order in interpolation])
if is_iso1:
if dim == 3:
return iso1.grad3d(inp, grid, bound_fn, extrapolate)
elif dim == 2:
return iso1.grad2d(inp, grid, bound_fn, extrapolate)
elif dim == 1:
return iso1.grad1d(inp, grid, bound_fn, extrapolate)
is_iso0 = list_all([order == 0 for order in interpolation])
if is_iso0:
return iso0.grad(inp, grid, bound_fn, extrapolate)
spline_fn = make_spline(interpolation)
return nd.grad(inp, grid, bound_fn, spline_fn, extrapolate)
# @torch.jit.script
def grid_pushgrad(inp, grid, shape: List[int], bound: List[int],
interpolation: List[int], extrapolate: int):
""" /!\ Used only in backward pass of grid_grad
inp: (B, C, *spatial_in, D) tensor
grid: (B, *spatial_in, D) tensor
shape: List{D}[int], optional
bound: List{D}[int] tensor
interpolation: List{D}[int]
extrapolate: int
returns: (B, C, *shape) tensor
"""
dim = grid.shape[-1]
bound = pad_list_int(bound, dim)
interpolation = pad_list_int(interpolation, dim)
bound_fn = make_bound(bound)
is_iso1 = list_all([order == 1 for order in interpolation])
if is_iso1:
if dim == 3:
return iso1.pushgrad3d(inp, grid, shape, bound_fn, extrapolate)
elif dim == 2:
return iso1.pushgrad2d(inp, grid, shape, bound_fn, extrapolate)
elif dim == 1:
return iso1.pushgrad1d(inp, grid, shape, bound_fn, extrapolate)
is_iso0 = list_all([order == 0 for order in interpolation])
if is_iso0:
return iso0.pushgrad(inp, grid, shape, bound_fn, extrapolate)
spline_fn = make_spline(interpolation)
return nd.pushgrad(inp, grid, shape, bound_fn, spline_fn, extrapolate)
# @torch.jit.script
def grid_hess(inp, grid, bound: List[int], interpolation: List[int],
extrapolate: int):
""" /!\ Used only in backward pass of grid_grad
inp: (B, C, *spatial_in) tensor
grid: (B, *spatial_out, D) tensor
bound: List{D}[int] tensor
interpolation: List{D}[int]
extrapolate: int
returns: (B, C, *spatial_out, D, D) tensor
"""
dim = grid.shape[-1]
bound = pad_list_int(bound, dim)
interpolation = pad_list_int(interpolation, dim)
bound_fn = make_bound(bound)
is_iso1 = list_all([order == 1 for order in interpolation])
if is_iso1:
if dim == 3:
return iso1.hess3d(inp, grid, bound_fn, extrapolate)
if dim == 2:
return iso1.hess2d(inp, grid, bound_fn, extrapolate)
if dim == 1:
return iso1.hess1d(inp, grid, bound_fn, extrapolate)
is_iso0 = list_all([order == 0 for order in interpolation])
if is_iso0:
return iso0.hess(inp, grid, bound_fn, extrapolate)
spline_fn = make_spline(interpolation)
return nd.hess(inp, grid, bound_fn, spline_fn, extrapolate)
# @torch.jit.script
def grid_pull_backward(grad, inp, grid, bound: List[int],
interpolation: List[int], extrapolate: int) \
-> Tuple[Optional[Tensor], Optional[Tensor], ]:
"""
grad: (B, C, *spatial_out) tensor
inp: (B, C, *spatial_in) tensor
grid: (B, *spatial_out, D) tensor
bound: List{D}[int] tensor
interpolation: List{D}[int]
extrapolate: int
returns: (B, C, *spatial_in) tensor, (B, *spatial_out, D)
"""
dim = grid.shape[-1]
grad_inp: Optional[Tensor] = None
grad_grid: Optional[Tensor] = None
if inp.requires_grad:
grad_inp = grid_push(grad, grid, inp.shape[-dim:], bound, interpolation, extrapolate)
if grid.requires_grad:
grad_grid = grid_grad(inp, grid, bound, interpolation, extrapolate)
# grad_grid = dot(grad_grid, grad.unsqueeze(-1), dim=1)
grad_grid = (grad_grid * grad.unsqueeze(-1)).sum(dim=1)
return grad_inp, grad_grid
# @torch.jit.script
def grid_push_backward(grad, inp, grid, bound: List[int],
interpolation: List[int], extrapolate: int) \
-> Tuple[Optional[Tensor], Optional[Tensor], ]:
"""
grad: (B, C, *spatial_out) tensor
inp: (B, C, *spatial_in) tensor
grid: (B, *spatial_in, D) tensor
bound: List{D}[int] tensor
interpolation: List{D}[int]
extrapolate: int
returns: (B, C, *spatial_in) tensor, (B, *spatial_in, D)
"""
grad_inp: Optional[Tensor] = None
grad_grid: Optional[Tensor] = None
if inp.requires_grad:
grad_inp = grid_pull(grad, grid, bound, interpolation, extrapolate)
if grid.requires_grad:
grad_grid = grid_grad(grad, grid, bound, interpolation, extrapolate)
# grad_grid = dot(grad_grid, inp.unsqueeze(-1), dim=1)
grad_grid = (grad_grid * inp.unsqueeze(-1)).sum(dim=1)
return grad_inp, grad_grid
# @torch.jit.script
def grid_count_backward(grad, grid, bound: List[int],
interpolation: List[int], extrapolate: int) \
-> Optional[Tensor]:
"""
grad: (B, C, *spatial_out) tensor
grid: (B, *spatial_in, D) tensor
bound: List{D}[int] tensor
interpolation: List{D}[int]
extrapolate: int
returns: (B, C, *spatial_in) tensor, (B, *spatial_in, D)
"""
if grid.requires_grad:
return grid_grad(grad, grid, bound, interpolation, extrapolate).sum(1)
return None
# @torch.jit.script
def grid_grad_backward(grad, inp, grid, bound: List[int],
interpolation: List[int], extrapolate: int) \
-> Tuple[Optional[Tensor], Optional[Tensor]]:
"""
grad: (B, C, *spatial_out, D) tensor
inp: (B, C, *spatial_in) tensor
grid: (B, *spatial_out, D) tensor
bound: List{D}[int] tensor
interpolation: List{D}[int]
extrapolate: int
returns: (B, C, *spatial_in, D) tensor, (B, *spatial_out, D)
"""
dim = grid.shape[-1]
shape = inp.shape[-dim:]
grad_inp: Optional[Tensor] = None
grad_grid: Optional[Tensor] = None
if inp.requires_grad:
grad_inp = grid_pushgrad(grad, grid, shape, bound, interpolation, extrapolate)
if grid.requires_grad:
grad_grid = grid_hess(inp, grid, bound, interpolation, extrapolate)
# grad_grid = dot_multi(grad_grid, grad.unsqueeze(-1), dim=[1, -2])
grad_grid = (grad_grid * grad.unsqueeze(-1)).sum(dim=[1, -2])
return grad_inp, grad_grid
|