File size: 10,845 Bytes
2571f24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
###############################
#### Brani-ID Inference #####
###############################
import os, sys, warnings, shutil, glob, time, datetime
warnings.filterwarnings("ignore")
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from collections import defaultdict
import torch
import numpy as np
from utils.misc import make_dir, viewVolume, MRIread
import utils.test_utils as utils
from Generator.utils import fast_3D_interp_torch
device = torch.cuda.current_device() if torch.cuda.is_available() else 'cpu'
#################################
### For hemisphere prediction ###
#################################
label_list_left_segmentation = [0, 1, 2, 3, 4, 7, 8, 9, 10, 14, 15, 17, 31, 34, 36, 38, 40, 42]
lut = torch.zeros(10000, dtype=torch.long, device=device)
for l in range(len(label_list_left_segmentation)):
lut[label_list_left_segmentation[l]] = l
# get left hemis mask
#S = read_brainseg.nii
#S = lut[X.astype(np.int)]
#X = read_mni_coord_X
#M = (S > 0) & (X < 0)
# apply hemis mask for all image I
#I[M==0] = 0
#################################
#################################
def prepare_paths(data_root, split_txt):
# Collect list of available images, per dataset
datasets = []
g = glob.glob(os.path.join(data_root, '*' + 'T1w.nii'))
for i in range(len(g)):
filename = os.path.basename(g[i])
dataset = filename[:filename.find('.')]
found = False
for d in datasets:
if dataset == d:
found = True
if found is False:
datasets.append(dataset)
print('Found ' + str(len(datasets)) + ' datasets with ' + str(len(g)) + ' scans in total')
print('Dataset list', datasets)
names = []
split_file = open(split_txt, 'r')
split_names = []
for subj in split_file.readlines():
split_names.append(subj.strip())
for i in range(len(datasets)):
names.append([name for name in split_names if os.path.basename(name).startswith(datasets[i])])
datasets_num = len(datasets)
datasets_len = [len(names[i]) for i in range(len(names))]
print('Num of testing data', sum([len(names[i]) for i in range(len(names))]))
return names, datasets
def get_info(t1):
t2 = t1[:-7] + 'T2w.nii'
flair = t1[:-7] + 'FLAIR.nii'
ct = t1[:-7] + 'CT.nii'
cerebral_labels = t1[:-7] + 'brainseg.nii'
segmentation_labels = t1[:-7] + 'brainseg_with_extracerebral.nii'
brain_dist_map = t1[:-7] + 'brain_dist_map.nii'
lp_dist_map = t1[:-7] + 'lp_dist_map.nii'
rp_dist_map = t1[:-7] + 'rp_dist_map.nii'
lw_dist_map = t1[:-7] + 'lw_dist_map.nii'
rw_dist_map = t1[:-7] + 'rw_dist_map.nii'
mni_reg_x = t1[:-7] + 'mni_reg.x.nii'
mni_reg_y = t1[:-7] + 'mni_reg.y.nii'
mni_reg_z = t1[:-7] + 'mni_reg.z.nii'
modalities = {'T1': t1}
if os.path.isfile(t2):
modalities.update({'T2': t2})
if os.path.isfile(flair):
modalities.update({'FLAIR': flair})
if os.path.isfile(ct):
modalities.update({'CT': ct})
aux = {'label': segmentation_labels, 'cerebral_label': cerebral_labels, 'distance': brain_dist_map,
'regx': mni_reg_x, 'regy': mni_reg_y, 'regz': mni_reg_z,
'lp': lp_dist_map, 'lw': lw_dist_map, 'rp': rp_dist_map, 'rw': rw_dist_map}
return modalities, aux
#################################
gen_cfg = '/autofs/space/yogurt_003/users/pl629/code/MTBrainID/cfgs/generator/test/demo_test.yaml'
gen_hemis_cfg = '/autofs/space/yogurt_003/users/pl629/code/MTBrainID/cfgs/generator/test/demo_test_hemis.yaml'
model_cfg = '/autofs/space/yogurt_003/users/pl629/code/MTBrainID/cfgs/trainer/test/demo_test.yaml'
#win_size = [192, 192, 192]
win_size = [160, 160, 160]
mask_output = False
exclude_keys = ['segmentation']
data_root = '/autofs/vast/lemon/data_curated/brain_mris_QCed'
split_txt = '/autofs/vast/lemon/temp_stuff/peirong/train_test_split/test.txt'
names, datasets = prepare_paths(data_root, split_txt)
max_num_test_dataset = None #1
max_num_per_dataset = None #5
zero_crop = False
main_save_dir = make_dir('/autofs/space/yogurt_002/users/pl629/results/MTBrainID/test/', reset = False)
models = [
#('test_reggr', '/autofs/vast/lemon/temp_stuff/peirong/results/MTBrainID/wosr_reggrad/l6_16/1025-1744/ckp/checkpoint_latest.pth'),
#('test_lowres', '/autofs/vast/lemon/temp_stuff/peirong/results/MTBrainID/wosr_reggrad_lowres/l6_16/1025-1746/ckp/checkpoint_latest.pth'),
('test_sr', '/autofs/vast/lemon/temp_stuff/peirong/results/MTBrainID/sr/l6_16/0926-2035/ckp/checkpoint_latest.pth'),
#('test_sr_lowres', '/autofs/vast/lemon/temp_stuff/peirong/results/MTBrainID/sr_lowres/l6_16/0926-2025/ckp/checkpoint_latest.pth'),
#('test_hemis', '/autofs/vast/lemon/temp_stuff/peirong/results/MTBrainID/hemis/l6_16/0806-1008/ckp/checkpoint_latest.pth'),
#('comp_synth', '/autofs/vast/lemon/temp_stuff/peirong/results/MTBrainID/synth/l6_16/0924-0929/ckp/checkpoint_latest.pth'),
#('comp_dist', '/autofs/vast/lemon/temp_stuff/peirong/results/MTBrainID/dist/l6_16/0806-1024/ckp/checkpoint_latest.pth'),
#('comp_reg', '/autofs/vast/lemon/temp_stuff/peirong/results/MTBrainID/reg/l6_16/0806-1029/ckp/checkpoint_latest.pth'),
#('comp_bf', '/autofs/vast/lemon/temp_stuff/peirong/results/MTBrainID/bf/l6_16/0806-1026/ckp/checkpoint_latest.pth'),
]
#spacing = [1.5, 1.5, 5] # [1, 1, 1], [1.5, 1.5, 5], [3, 3, 3], None
#add_bf = False
setups = [
#([1, 1, 1], False),
#([1, 1, 1], True),
([1.5, 1.5, 5], False),
#([1.5, 1.5, 5], True),
]
all_start_time = time.time()
for postfix, ckp_path in models:
for spacing, add_bf in setups:
curr_postfix = postfix + '_BF' if add_bf else postfix
curr_postfix += '_%s-%s-%s' % (str(spacing[0]), str(spacing[1]), str(spacing[2])) if spacing is not None else '_1-1-1'
save_dir = make_dir(os.path.join(main_save_dir, curr_postfix), reset = True)
print('\nSave at: %s\n' % save_dir)
curr_gen_cfg = gen_hemis_cfg if 'hemis' in postfix else gen_cfg
for i, curr_dataset in enumerate(names):
curr_dataset.sort()
print('Dataset: %s (%d/%d) -- %d total cases' % (datasets[i], i+1, len(datasets), len(curr_dataset)))
#'''
if max_num_test_dataset is not None and i >= max_num_test_dataset:
break
start_time = time.time()
for j, t1_name in enumerate(curr_dataset):
if max_num_per_dataset is not None and j >= max_num_per_dataset:
break
subj_name = os.path.basename(t1_name).split('.T1w')[0]
subj_dir = make_dir(os.path.join(save_dir, subj_name))
print('Now testing: %s (%d/%d)' % (t1_name, j+1, len(curr_dataset)))
modalities, aux = get_info(t1_name)
S_cerebral = torch.squeeze(utils.prepare_image(aux['cerebral_label'], win_size = win_size, zero_crop = zero_crop, spacing = spacing, rescale = False, im_only = True, device = device)) # read seg map
if 'hemis' in postfix:
S = utils.prepare_image(aux['cerebral_label'], win_size = win_size, zero_crop = zero_crop, spacing = spacing, rescale = False, im_only = True, device = device) # read seg map
S = lut[S.int()] # mask out non-left labels
X = utils.prepare_image(aux['regx'], win_size = win_size, zero_crop = zero_crop, spacing = spacing, rescale = False, im_only = True, device = device) # read_mni_coord_X
hemis_mask = (S > 0) & (X < 0).int() # (1, 1, s, r, c)
viewVolume(hemis_mask, names = ['.'.join(os.path.basename(aux['label']).split('.')[:2]) + '.hemis_mask'], save_dir = subj_dir)
else:
hemis_mask = None
# save all GT
for mod in modalities.keys():
final, orig, high_res, bf, _, _, _ = utils.prepare_image(modalities[mod], win_size = win_size, zero_crop = zero_crop, spacing = spacing, add_bf = add_bf, is_CT = 'CT' in mod, rescale = False, hemis_mask = hemis_mask, im_only = False, device = device)
viewVolume(orig, names = [os.path.basename(modalities[mod])[:-4]], save_dir = subj_dir)
viewVolume(final, names = [os.path.basename(modalities[mod])[:-4] + '.input'], save_dir = subj_dir)
viewVolume(high_res, names = [os.path.basename(modalities[mod])[:-4] + '.high_res'], save_dir = subj_dir)
if bf is not None:
viewVolume(bf, names = [os.path.basename(modalities[mod])[:-4] + '.bias_field'], save_dir = subj_dir)
for mod in aux.keys():
im = utils.prepare_image(aux[mod], win_size = win_size, zero_crop = zero_crop, is_label = 'label' in mod, rescale = False, hemis_mask = hemis_mask, im_only = True, device = device)
viewVolume(im, names = [os.path.basename(aux[mod])[:-4]], save_dir = subj_dir)
# testing
for mod in modalities.keys():
test_dir = make_dir(os.path.join(subj_dir, 'input_' + mod))
im = utils.prepare_image(os.path.join(subj_dir, os.path.basename(modalities[mod])[:-4] + '.input.nii.gz'), win_size = win_size, zero_crop = zero_crop, is_CT = 'CT' in mod, hemis_mask = hemis_mask, im_only = True, device = device)
outs = utils.evaluate_image(im, ckp_path = ckp_path, feature_only = False, device = device, gen_cfg = curr_gen_cfg, model_cfg = model_cfg)
if mask_output:
mask = im.clone()
mask[im != 0.] = 1.
for k, v in outs.items():
if 'feat' not in k and k not in exclude_keys:
viewVolume(v * mask if mask_output else v, names = [ 'out_' + k], save_dir = test_dir)
print(S_cerebral.shape, outs['regx'].shape)
deformed_atlas = utils.get_deformed_atlas(S_cerebral, torch.squeeze(outs['regx']), torch.squeeze(outs['regy']), torch.squeeze(outs['regz']))
viewVolume(deformed_atlas * mask if mask_output else deformed_atlas, names = [ 'out_deformed_atlas'], save_dir = test_dir)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Testing time for {}: {}'.format(total_time_str, datasets[i]))
all_total_time = time.time() - all_start_time
all_total_time_str = str(datetime.timedelta(seconds=int(all_total_time)))
print('Total testing time: {}'.format(total_time_str))
#''' |