File size: 9,656 Bytes
2571f24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# ported from https://github.com/pvigier/perlin-numpy


import torch
import numpy as np
import matplotlib.pyplot as plt



def center_crop(img, win_size = [220, 220, 220]):
    # center crop
    if len(img.shape) == 4: 
        img = torch.permute(img, (3, 0, 1, 2)) # (move last dim to first)
        img = img[None]
        permuted = True
    else: 
        assert len(img.shape) == 3
        img = img[None, None]
        permuted = False

    orig_shp = img.shape[2:] # (1, d, s, r, c)
    if win_size is None:
        if permuted:
            return torch.permute(img, (0, 2, 3, 4, 1)), [0, 0, 0], orig_shp
        return img, [0, 0, 0], orig_shp
    elif orig_shp[0] > win_size[0] or orig_shp[1] > win_size[1] or orig_shp[2] > win_size[2]:
        crop_start = [ max((orig_shp[i] - win_size[i]), 0) // 2 for i in range(3) ]
        crop_img = img[ :, :, crop_start[0] : crop_start[0] + win_size[0], 
                   crop_start[1] : crop_start[1] + win_size[1], 
                   crop_start[2] : crop_start[2] + win_size[2]]
        if permuted:
            return torch.permute(crop_img, (0, 2, 3, 4, 1)), [0, 0, 0], orig_shp
        return crop_img, crop_start, orig_shp
    else:
        if permuted:
            return torch.permute(img, (0, 2, 3, 4, 1)), [0, 0, 0], orig_shp
        return img, [0, 0, 0], orig_shp



def V_plot(Vx, Vy, save_path):
    # Meshgrid 
    X,Y = np.meshgrid(np.arange(0, Vx.shape[0], 1), np.arange(0, Vx.shape[1], 1)) 
    # Assign vector directions 
    Ex = Vx 
    Ey = Vy 

    # Depict illustration 
    plt.figure() 
    plt.streamplot(X,Y,Ex,Ey, density=1.4, linewidth=None, color='orange')  
    plt.axis('off')
    plt.savefig(save_path)
    #plt.show()

def stream_2D(Phi, batched = False, delta_lst = [1., 1.]):
    '''
    input: Phi as a scalar field in 2D grid: (r, c) or (n_batch, r, c)
    output: curl of Phi (divergence-free by definition)
    ''' 
    dD = gradient_c(Phi, batched = batched, delta_lst = delta_lst) 
    Vx = - dD[..., 1]
    Vy = dD[..., 0]
    return Vx, Vy


def stream_3D(Phi_a, Phi_b, Phi_c, batched = False, delta_lst = [1., 1., 1.]):
    '''
    input: (batch, s, r, c)
    '''
    device = Phi_a.device
    dDa = gradient_c(Phi_a, batched = batched, delta_lst = delta_lst)
    dDb = gradient_c(Phi_b, batched = batched, delta_lst = delta_lst)
    dDc = gradient_c(Phi_c, batched = batched, delta_lst = delta_lst)
    Va_x, Va_y, Va_z = dDa[..., 0], dDa[..., 1], dDa[..., 2]
    Vb_x, Vb_y, Vb_z = dDb[..., 0], dDb[..., 1], dDb[..., 2]
    Vc_x, Vc_y, Vc_z = dDc[..., 0], dDc[..., 1], dDc[..., 2]
    Vx = Vc_y - Vb_z
    Vy = Va_z - Vc_x
    Vz = Vb_x - Va_y
    return Vx, Vy, Vz



def gradient_f(X, batched = False, delta_lst = [1., 1., 1.]):
    '''
    Compute gradient of a torch tensor "X" in each direction
    Upper-boundaries: Backward Difference
    Non-boundaries & Upper-boundaries: Forward Difference
    if X is batched: (n_batch, ...);
    else: (...)
    '''
    device = X.device
    dim = len(X.size()) - 1 if batched else len(X.size())
    #print(batched)
    #print(dim)
    if dim == 1:
        #print('dim = 1')
        dX = torch.zeros(X.size(), dtype = torch.float, device = device)
        X = X.permute(1, 0) if batched else X
        dX = dX.permute(1, 0) if batched else dX
        dX[-1] = X[-1] - X[-2] # Backward Difference
        dX[:-1] = X[1:] - X[:-1] # Forward Difference

        dX = dX.permute(1, 0) if batched else dX
        dX /= delta_lst[0]
    elif dim == 2:
        #print('dim = 2')
        dX = torch.zeros(X.size() + tuple([2]), dtype = torch.float, device = device)
        X = X.permute(1, 2, 0) if batched else X
        dX = dX.permute(1, 2, 3, 0) if batched else dX # put batch to last dim
        dX[-1, :, 0] = X[-1, :] - X[-2, :] # Backward Difference
        dX[:-1, :, 0] = X[1:] - X[:-1] # Forward Difference

        dX[:, -1, 1] = X[:, -1] - X[:, -2] # Backward Difference
        dX[:, :-1, 1] = X[:, 1:] - X[:, :-1] # Forward Difference

        dX = dX.permute(3, 0, 1, 2) if batched else dX
        dX[..., 0] /= delta_lst[0]
        dX[..., 1] /= delta_lst[1]
    elif dim == 3:
        #print('dim = 3')
        dX = torch.zeros(X.size() + tuple([3]), dtype = torch.float, device = device)
        X = X.permute(1, 2, 3, 0) if batched else X
        dX = dX.permute(1, 2, 3, 4, 0) if batched else dX
        dX[-1, :, :, 0] = X[-1, :, :] - X[-2, :, :] # Backward Difference
        dX[:-1, :, :, 0] = X[1:] - X[:-1] # Forward Difference

        dX[:, -1, :, 1] = X[:, -1] - X[:, -2] # Backward Difference
        dX[:, :-1, :, 1] = X[:, 1:] - X[:, :-1] # Forward Difference

        dX[:, :, -1, 2] = X[:, :, -1] - X[:, :, -2] # Backward Difference
        dX[:, :, :-1, 2] = X[:, :, 1:] - X[:, :, :-1] # Forward Difference

        dX = dX.permute(4, 0, 1, 2, 3) if batched else dX
        dX[..., 0] /= delta_lst[0]
        dX[..., 1] /= delta_lst[1]
        dX[..., 2] /= delta_lst[2]
    return dX


def gradient_b(X, batched = False, delta_lst = [1., 1., 1.]):
    '''
    Compute gradient of a torch tensor "X" in each direction
    Non-boundaries & Upper-boundaries: Backward Difference
    Lower-boundaries: Forward Difference
    if X is batched: (n_batch, ...);
    else: (...)
    '''
    device = X.device
    dim = len(X.size()) - 1 if batched else len(X.size())
    #print(batched)
    #print(dim)
    if dim == 1:
        #print('dim = 1')
        dX = torch.zeros(X.size(), dtype = torch.float, device = device)
        X = X.permute(1, 0) if batched else X
        dX = dX.permute(1, 0) if batched else dX
        dX[1:] = X[1:] - X[:-1] # Backward Difference
        dX[0] = X[1] - X[0] # Forward Difference

        dX = dX.permute(1, 0) if batched else dX
        dX /= delta_lst[0]
    elif dim == 2:
        #print('dim = 2')
        dX = torch.zeros(X.size() + tuple([2]), dtype = torch.float, device = device)
        X = X.permute(1, 2, 0) if batched else X
        dX = dX.permute(1, 2, 3, 0) if batched else dX # put batch to last dim
        dX[1:, :, 0] = X[1:, :] - X[:-1, :] # Backward Difference
        dX[0, :, 0] = X[1] - X[0] # Forward Difference

        dX[:, 1:, 1] = X[:, 1:] - X[:, :-1] # Backward Difference
        dX[:, 0, 1] = X[:, 1] - X[:, 0] # Forward Difference

        dX = dX.permute(3, 0, 1, 2) if batched else dX
        dX[..., 0] /= delta_lst[0]
        dX[..., 1] /= delta_lst[1]
    elif dim == 3:
        #print('dim = 3')
        dX = torch.zeros(X.size() + tuple([3]), dtype = torch.float, device = device)
        X = X.permute(1, 2, 3, 0) if batched else X
        dX = dX.permute(1, 2, 3, 4, 0) if batched else dX
        dX[1:, :, :, 0] = X[1:, :, :] - X[:-1, :, :] # Backward Difference
        dX[0, :, :, 0] = X[1] - X[0] # Forward Difference

        dX[:, 1:, :, 1] = X[:, 1:] - X[:, :-1] # Backward Difference
        dX[:, 0, :, 1] = X[:, 1] - X[:, 0] # Forward Difference

        dX[:, :, 1:, 2] = X[:, :, 1:] - X[:, :, :-1] # Backward Difference
        dX[:, :, 0, 2] = X[:, :, 1] - X[:, :, 0] # Forward Difference

        dX = dX.permute(4, 0, 1, 2, 3) if batched else dX
        dX[..., 0] /= delta_lst[0]
        dX[..., 1] /= delta_lst[1]
        dX[..., 2] /= delta_lst[2]
    return dX
  

def gradient_c(X, batched = False, delta_lst = [1., 1., 1.]):
    '''
    Compute gradient of a torch tensor "X" in each direction
    Non-boundaries: Central Difference
    Upper-boundaries: Backward Difference
    Lower-boundaries: Forward Difference
    if X is batched: (n_batch, ...);
    else: (...)
    ''' 

    device = X.device
    dim = len(X.size()) - 1 if batched else len(X.size())
    #print(X.size())
    #print(batched)
    #print(dim)
    if dim == 1:
        #print('dim = 1')
        dX = torch.zeros(X.size(), dtype = torch.float, device = device)
        X = X.permute(1, 0) if batched else X
        dX = dX.permute(1, 0) if batched else dX
        dX[1:-1] = (X[2:] - X[:-2]) / 2 # Central Difference
        dX[0] = X[1] - X[0] # Forward Difference
        dX[-1] = X[-1] - X[-2] # Backward Difference

        dX = dX.permute(1, 0) if batched else dX
        dX /= delta_lst[0]
    elif dim == 2:
        #print('dim = 2')
        dX = torch.zeros(X.size() + tuple([2]), dtype = torch.float, device = device)
        X = X.permute(1, 2, 0) if batched else X
        dX = dX.permute(1, 2, 3, 0) if batched else dX # put batch to last dim
        dX[1:-1, :, 0] = (X[2:, :] - X[:-2, :]) / 2
        dX[0, :, 0] = X[1] - X[0]
        dX[-1, :, 0] = X[-1] - X[-2]
        dX[:, 1:-1, 1] = (X[:, 2:] - X[:, :-2]) / 2
        dX[:, 0, 1] = X[:, 1] - X[:, 0]
        dX[:, -1, 1] = X[:, -1] - X[:, -2]

        dX = dX.permute(3, 0, 1, 2) if batched else dX
        dX[..., 0] /= delta_lst[0]
        dX[..., 1] /= delta_lst[1]
    elif dim == 3:
        #print('dim = 3')
        dX = torch.zeros(X.size() + tuple([3]), dtype = torch.float, device = device)
        X = X.permute(1, 2, 3, 0) if batched else X
        dX = dX.permute(1, 2, 3, 4, 0) if batched else dX
        dX[1:-1, :, :, 0] = (X[2:, :, :] - X[:-2, :, :]) / 2
        dX[0, :, :, 0] = X[1] - X[0]
        dX[-1, :, :, 0] = X[-1] - X[-2]
        dX[:, 1:-1, :, 1] = (X[:, 2:, :] - X[:, :-2, :]) / 2
        dX[:, 0, :, 1] = X[:, 1] - X[:, 0]
        dX[:, -1, :, 1] = X[:, -1] - X[:, -2]
        dX[:, :, 1:-1, 2] = (X[:, :, 2:] - X[:, :, :-2]) / 2
        dX[:, :, 0, 2] = X[:, :, 1] - X[:, :, 0]
        dX[:, :, -1, 2] = X[:, :, -1] - X[:, :, -2]

        dX = dX.permute(4, 0, 1, 2, 3) if batched else dX
        dX[..., 0] /= delta_lst[0]
        dX[..., 1] /= delta_lst[1]
        dX[..., 2] /= delta_lst[2]
     
    return dX