File size: 35,290 Bytes
2571f24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 |
import os, sys, glob
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from collections import defaultdict
import random
import torch
import numpy as np
import nibabel as nib
from torch.utils.data import Dataset
from .utils import *
from .constants import n_pathology, pathology_paths, pathology_prob_paths, \
n_neutral_labels_brainseg_with_extracerebral, label_list_segmentation_brainseg_with_extracerebral, \
label_list_segmentation_brainseg_left, augmentation_funcs, processing_funcs
import utils.interpol as interpol
from utils.misc import viewVolume
from ShapeID.DiffEqs.pde import AdvDiffPDE
class BaseGen(Dataset):
"""
BaseGen dataset
"""
def __init__(self, gen_args, device='cpu'):
self.gen_args = gen_args
self.split = gen_args.split
self.synth_args = self.gen_args.generator
self.shape_gen_args = gen_args.pathology_shape_generator
self.real_image_args = gen_args.real_image_generator
self.synth_image_args = gen_args.synth_image_generator
self.augmentation_steps = vars(gen_args.augmentation_steps)
self.input_prob = vars(gen_args.modality_probs)
self.device = device
self.prepare_tasks()
self.prepare_paths()
self.prepare_grid()
self.prepare_one_hot()
def __len__(self):
return sum([len(self.names[i]) for i in range(len(self.names))])
def idx_to_path(self, idx):
cnt = 0
for i, l in enumerate(self.datasets_len):
if idx >= cnt and idx < cnt + l:
dataset_name = self.datasets[i]
age = self.ages[i][os.path.basename(self.names[i][idx - cnt]).split('.T1w')[0]] if len(self.ages) > 0 else None
return dataset_name, vars(self.input_prob[dataset_name]), self.names[i][idx - cnt], age
else:
cnt += l
def prepare_paths(self):
# Collect list of available images, per dataset
if len(self.gen_args.dataset_names) < 1:
datasets = []
g = glob.glob(os.path.join(self.gen_args.data_root, '*' + 'T1w.nii'))
for i in range(len(g)):
filename = os.path.basename(g[i])
dataset = filename[:filename.find('.')]
found = False
for d in datasets:
if dataset == d:
found = True
if found is False:
datasets.append(dataset)
print('Found ' + str(len(datasets)) + ' datasets with ' + str(len(g)) + ' scans in total')
else:
datasets = self.gen_args.dataset_names
print('Dataset list', datasets)
names = []
if 'age' in self.tasks:
self.split = self.split + '_age'
if self.gen_args.split_root is not None:
split_file = open(os.path.join(self.gen_args.split_root, self.split + '.txt'), 'r')
split_names = []
for subj in split_file.readlines():
split_names.append(subj.strip())
for i in range(len(datasets)):
names.append([name for name in split_names if os.path.basename(name).startswith(datasets[i])])
#else:
# for i in range(len(datasets)):
# names.append(glob.glob(os.path.join(self.gen_args.data_root, datasets[i] + '.*' + 'T1w.nii')))
# read brain age
ages = []
if 'age' in self.tasks:
age_file = open(os.path.join(self.gen_args.split_root, 'participants_age.txt'), 'r')
subj_name_age = []
for line in age_file.readlines(): # 'subj age\n'
subj_name_age.append(line.strip().split(' '))
for i in range(len(datasets)):
ages.append({})
for [name, age] in subj_name_age:
if name.startswith(datasets[i]):
ages[-1][name] = float(age)
print('Age info', self.split, len(ages[0].items()), min(ages[0].values()), max(ages[0].values()))
self.ages = ages
self.names = names
self.datasets = datasets
self.datasets_num = len(datasets)
self.datasets_len = [len(self.names[i]) for i in range(len(self.names))]
print('Num of data', sum([len(self.names[i]) for i in range(len(self.names))]))
self.pathology_type = None #setup_dict['pathology_type']
def prepare_tasks(self):
self.tasks = [key for (key, value) in vars(self.gen_args.task).items() if value]
if 'bias_field' in self.tasks and 'segmentation' not in self.tasks:
# add segmentation mask for computing bias_field_soft_mask
self.tasks += ['segmentation']
if 'pathology' in self.tasks and self.synth_args.augment_pathology and self.synth_args.random_shape_prob < 1.:
self.t = torch.from_numpy(np.arange(self.shape_gen_args.max_nt) * self.shape_gen_args.dt).to(self.device)
with torch.no_grad():
self.adv_pde = AdvDiffPDE(data_spacing=[1., 1., 1.],
perf_pattern='adv',
V_type='vector_div_free',
V_dict={},
BC=self.shape_gen_args.bc,
dt=self.shape_gen_args.dt,
device=self.device
)
else:
self.t, self.adv_pde = None, None
for task_name in self.tasks:
if task_name not in processing_funcs.keys():
print('Warning: Function for task "%s" not found' % task_name)
def prepare_grid(self):
self.size = self.synth_args.size
# Get resolution of training data
#aff = nib.load(os.path.join(self.modalities['Gen'], self.names[0])).affine
#self.res_training_data = np.sqrt(np.sum(abs(aff[:-1, :-1]), axis=0))
self.res_training_data = np.array([1.0, 1.0, 1.0])
xx, yy, zz = np.meshgrid(range(self.size[0]), range(self.size[1]), range(self.size[2]), sparse=False, indexing='ij')
self.xx = torch.tensor(xx, dtype=torch.float, device=self.device)
self.yy = torch.tensor(yy, dtype=torch.float, device=self.device)
self.zz = torch.tensor(zz, dtype=torch.float, device=self.device)
self.c = torch.tensor((np.array(self.size) - 1) / 2, dtype=torch.float, device=self.device)
self.xc = self.xx - self.c[0]
self.yc = self.yy - self.c[1]
self.zc = self.zz - self.c[2]
return
def prepare_one_hot(self):
if self.synth_args.left_hemis_only:
n_labels = len(label_list_segmentation_brainseg_left)
label_list_segmentation = label_list_segmentation_brainseg_left
else:
# Matrix for one-hot encoding (includes a lookup-table)
n_labels = len(label_list_segmentation_brainseg_with_extracerebral)
label_list_segmentation = label_list_segmentation_brainseg_with_extracerebral
self.lut = torch.zeros(10000, dtype=torch.long, device=self.device)
for l in range(n_labels):
self.lut[label_list_segmentation[l]] = l
self.onehotmatrix = torch.eye(n_labels, dtype=torch.float, device=self.device)
# useless for left_hemis_only
nlat = int((n_labels - n_neutral_labels_brainseg_with_extracerebral) / 2.0)
self.vflip = np.concatenate([np.array(range(n_neutral_labels_brainseg_with_extracerebral)),
np.array(range(n_neutral_labels_brainseg_with_extracerebral + nlat, n_labels)),
np.array(range(n_neutral_labels_brainseg_with_extracerebral, n_neutral_labels_brainseg_with_extracerebral + nlat))])
return
def random_affine_transform(self, shp):
rotations = (2 * self.synth_args.max_rotation * np.random.rand(3) - self.synth_args.max_rotation) / 180.0 * np.pi
shears = (2 * self.synth_args.max_shear * np.random.rand(3) - self.synth_args.max_shear)
scalings = 1 + (2 * self.synth_args.max_scaling * np.random.rand(3) - self.synth_args.max_scaling)
scaling_factor_distances = np.prod(scalings) ** .33333333333
A = torch.tensor(make_affine_matrix(rotations, shears, scalings), dtype=torch.float, device=self.device)
# sample center
if self.synth_args.random_shift:
max_shift = (torch.tensor(np.array(shp[0:3]) - self.size, dtype=torch.float, device=self.device)) / 2
max_shift[max_shift < 0] = 0
c2 = torch.tensor((np.array(shp[0:3]) - 1)/2, dtype=torch.float, device=self.device) + (2 * (max_shift * torch.rand(3, dtype=float, device=self.device)) - max_shift)
else:
c2 = torch.tensor((np.array(shp[0:3]) - 1)/2, dtype=torch.float, device=self.device)
return scaling_factor_distances, A, c2
def random_nonlinear_transform(self, photo_mode, spac):
nonlin_scale = self.synth_args.nonlin_scale_min + np.random.rand(1) * (self.synth_args.nonlin_scale_max - self.synth_args.nonlin_scale_min)
size_F_small = np.round(nonlin_scale * np.array(self.size)).astype(int).tolist()
if photo_mode:
size_F_small[1] = np.round(self.size[1]/spac).astype(int)
nonlin_std = self.synth_args.nonlin_std_max * np.random.rand()
Fsmall = nonlin_std * torch.randn([*size_F_small, 3], dtype=torch.float, device=self.device)
F = myzoom_torch(Fsmall, np.array(self.size) / size_F_small)
if photo_mode:
F[:, :, :, 1] = 0
if 'surface' in self.tasks: # TODO need to integrate the non-linear deformation fields for inverse
steplength = 1.0 / (2.0 ** self.synth_args.n_steps_svf_integration)
Fsvf = F * steplength
for _ in range(self.synth_args.n_steps_svf_integration):
Fsvf += fast_3D_interp_torch(Fsvf, self.xx + Fsvf[:, :, :, 0], self.yy + Fsvf[:, :, :, 1], self.zz + Fsvf[:, :, :, 2], 'linear')
Fsvf_neg = -F * steplength
for _ in range(self.synth_args.n_steps_svf_integration):
Fsvf_neg += fast_3D_interp_torch(Fsvf_neg, self.xx + Fsvf_neg[:, :, :, 0], self.yy + Fsvf_neg[:, :, :, 1], self.zz + Fsvf_neg[:, :, :, 2], 'linear')
F = Fsvf
Fneg = Fsvf_neg
else:
Fneg = None
return F, Fneg
def generate_deformation(self, setups, shp):
# generate affine deformation
scaling_factor_distances, A, c2 = self.random_affine_transform(shp)
# generate nonlinear deformation
if self.synth_args.nonlinear_transform:
F, Fneg = self.random_nonlinear_transform(setups['photo_mode'], setups['spac'])
else:
F, Fneg = None, None
# deform the image grid
xx2, yy2, zz2, x1, y1, z1, x2, y2, z2 = self.deform_grid(shp, A, c2, F)
return {'scaling_factor_distances': scaling_factor_distances,
'A': A,
'c2': c2,
'F': F,
'Fneg': Fneg,
'grid': [xx2, yy2, zz2, x1, y1, z1, x2, y2, z2],
}
def get_left_hemis_mask(self, grid):
[xx2, yy2, zz2, x1, y1, z1, x2, y2, z2] = grid
if self.synth_args.left_hemis_only:
S, aff, res = read_image(self.modalities['segmentation']) # read seg map
S = torch.squeeze(torch.from_numpy(S.get_fdata()[x1:x2, y1:y2, z1:z2].astype(int))).to(self.device)
S = self.lut[S.int()] # mask out non-left labels
X, aff, res = read_image(self.modalities['registration'][0]) # read_mni_coord_X
X = torch.squeeze(torch.from_numpy(X.get_fdata()[x1:x2, y1:y2, z1:z2])).to(self.device)
self.hemis_mask = ((S > 0) & (X < 0)).int()
else:
self.hemis_mask = None
def deform_grid(self, shp, A, c2, F):
if F is not None:
# deform the images (we do nonlinear "first" ie after so we can do heavy coronal deformations in photo mode)
xx1 = self.xc + F[:, :, :, 0]
yy1 = self.yc + F[:, :, :, 1]
zz1 = self.zc + F[:, :, :, 2]
else:
xx1 = self.xc
yy1 = self.yc
zz1 = self.zc
xx2 = A[0, 0] * xx1 + A[0, 1] * yy1 + A[0, 2] * zz1 + c2[0]
yy2 = A[1, 0] * xx1 + A[1, 1] * yy1 + A[1, 2] * zz1 + c2[1]
zz2 = A[2, 0] * xx1 + A[2, 1] * yy1 + A[2, 2] * zz1 + c2[2]
xx2[xx2 < 0] = 0
yy2[yy2 < 0] = 0
zz2[zz2 < 0] = 0
xx2[xx2 > (shp[0] - 1)] = shp[0] - 1
yy2[yy2 > (shp[1] - 1)] = shp[1] - 1
zz2[zz2 > (shp[2] - 1)] = shp[2] - 1
# Get the margins for reading images
x1 = torch.floor(torch.min(xx2))
y1 = torch.floor(torch.min(yy2))
z1 = torch.floor(torch.min(zz2))
x2 = 1+torch.ceil(torch.max(xx2))
y2 = 1 + torch.ceil(torch.max(yy2))
z2 = 1 + torch.ceil(torch.max(zz2))
xx2 -= x1
yy2 -= y1
zz2 -= z1
x1 = x1.cpu().numpy().astype(int)
y1 = y1.cpu().numpy().astype(int)
z1 = z1.cpu().numpy().astype(int)
x2 = x2.cpu().numpy().astype(int)
y2 = y2.cpu().numpy().astype(int)
z2 = z2.cpu().numpy().astype(int)
return xx2, yy2, zz2, x1, y1, z1, x2, y2, z2
def augment_sample(self, name, I_def, setups, deform_dict, res, target, pathol_direction = None, input_mode = 'synth'):
sample = {}
[xx2, yy2, zz2, x1, y1, z1, x2, y2, z2] = deform_dict['grid']
if not isinstance(I_def, torch.Tensor):
I_def = torch.squeeze(torch.tensor(I_def.get_fdata()[x1:x2, y1:y2, z1:z2].astype(float), dtype=torch.float, device=self.device))
if self.hemis_mask is not None:
I_def[self.hemis_mask == 0] = 0
# Deform grid
I_def = fast_3D_interp_torch(I_def, xx2, yy2, zz2, 'linear')
if input_mode == 'CT':
I_def = torch.clamp(I_def, min = 0., max = 80.)
if 'pathology' in target and isinstance(target['pathology'], torch.Tensor) and target['pathology'].sum() > 0:
I_def = self.encode_pathology(I_def, target['pathology'], target['pathology_prob'], pathol_direction)
I_def[I_def < 0.] = 0.
else:
target['pathology'] = 0.
target['pathology_prob'] = 0.
# Augment sample
aux_dict = {}
augmentation_steps = self.augmentation_steps['synth'] if input_mode == 'synth' else self.augmentation_steps['real']
for func_name in augmentation_steps:
I_def, aux_dict = augmentation_funcs[func_name](I = I_def, aux_dict = aux_dict, cfg = self.gen_args.generator,
input_mode = input_mode, setups = setups, size = self.size, res = res, device = self.device)
# Back to original resolution
if self.synth_args.bspline_zooming:
I_def = interpol.resize(I_def, shape=self.size, anchor='edge', interpolation=3, bound='dct2', prefilter=True)
else:
I_def = myzoom_torch(I_def, 1 / aux_dict['factors'])
maxi = torch.max(I_def)
I_final = I_def / maxi
if 'super_resolution' in self.tasks:
SRresidual = aux_dict['high_res'] / maxi - I_final
sample.update({'high_res_residual': torch.flip(SRresidual, [0])[None] if setups['flip'] else SRresidual[None]})
sample.update({'input': torch.flip(I_final, [0])[None] if setups['flip'] else I_final[None]})
if 'bias_field' in self.tasks and input_mode != 'CT':
sample.update({'bias_field_log': torch.flip(aux_dict['BFlog'], [0])[None] if setups['flip'] else aux_dict['BFlog'][None]})
return sample
def generate_sample(self, name, G, setups, deform_dict, res, target):
[xx2, yy2, zz2, x1, y1, z1, x2, y2, z2] = deform_dict['grid']
# Generate contrasts
mus, sigmas = self.get_contrast(setups['photo_mode'])
G = torch.squeeze(torch.tensor(G.get_fdata()[x1:x2, y1:y2, z1:z2].astype(float), dtype=torch.float, device=self.device))
#G[G > 255] = 0 # kill extracerebral regions
G[G == 77] = 2 # merge WM lesion to white matter region
if self.hemis_mask is not None:
G[self.hemis_mask == 0] = 0
Gr = torch.round(G).long()
SYN = mus[Gr] + sigmas[Gr] * torch.randn(Gr.shape, dtype=torch.float, device=self.device)
SYN[SYN < 0] = 0
#SYN /= mus[2] # normalize by WM
#SYN = gaussian_blur_3d(SYN, 0.5*np.ones(3), self.device) # cosmetic
SYN = fast_3D_interp_torch(SYN, xx2, yy2, zz2)
# Make random linear combinations
if np.random.rand() < self.gen_args.mix_synth_prob:
v = torch.rand(4)
v[2] = 0 if 'T2' not in self.modalities else v[2]
v[3] = 0 if 'FLAIR' not in self.modalities else v[3]
v /= torch.sum(v)
SYN = v[0] * SYN + v[1] * target['T1'][0]
if 'T2' in self.modalities:
SYN += v[2] * target['T2'][0]
if 'FLAIR' in self.modalities:
SYN += v[3] * target['FLAIR'][0]
if 'pathology' in target and isinstance(target['pathology'], torch.Tensor) and target['pathology'].sum() > 0:
SYN_cerebral = SYN.clone()
SYN_cerebral[Gr == 0] = 0
SYN_cerebral = fast_3D_interp_torch(SYN_cerebral, xx2, yy2, zz2)[None]
wm_mask = (Gr==2) | (Gr==41)
wm_mean = (SYN * wm_mask).sum() / wm_mask.sum()
gm_mask = (Gr!=0) & (Gr!=2) & (Gr!=41)
gm_mean = (SYN * gm_mask).sum() / gm_mask.sum()
target['pathology'][SYN_cerebral == 0] = 0
target['pathology_prob'][SYN_cerebral == 0] = 0
# determine to be T1-resembled or T2-resembled
#if pathol_direction: lesion should be brigher than WM.mean()
# pathol_direction: +1: T2-like; -1: T1-like
pathol_direction = self.get_pathology_direction('synth', gm_mean > wm_mean)
else:
pathol_direction = None
target['pathology'] = 0.
target['pathology_prob'] = 0.
SYN[SYN < 0.] = 0.
return target['pathology'], target['pathology_prob'], self.augment_sample(name, SYN, setups, deform_dict, res, target, pathol_direction = pathol_direction)
def get_pathology_direction(self, input_mode, pathol_direction = None):
#if np.random.rand() < 0.1: # in some (rare) cases, randomly pick the direction
# return random.choice([True, False])
if pathol_direction is not None: # for synth image
return pathol_direction
if input_mode in ['T1', 'CT']:
return False
if input_mode in ['T2', 'FLAIR']:
return True
return random.choice([True, False])
def get_contrast(self, photo_mode):
# Sample Gaussian image
mus = 25 + 200 * torch.rand(256, dtype=torch.float, device=self.device)
sigmas = 5 + 20 * torch.rand(256, dtype=torch.float, device=self.device)
if np.random.rand() < self.synth_args.ct_prob:
darker = 25 + 10 * torch.rand(1, dtype=torch.float, device=self.device)[0]
for l in ct_brightness_group['darker']:
mus[l] = darker
dark = 90 + 20 * torch.rand(1, dtype=torch.float, device=self.device)[0]
for l in ct_brightness_group['dark']:
mus[l] = dark
bright = 110 + 20 * torch.rand(1, dtype=torch.float, device=self.device)[0]
for l in ct_brightness_group['bright']:
mus[l] = bright
brighter = 150 + 50 * torch.rand(1, dtype=torch.float, device=self.device)[0]
for l in ct_brightness_group['brighter']:
mus[l] = brighter
if photo_mode or np.random.rand(1)<0.5: # set the background to zero every once in a while (or always in photo mode)
mus[0] = 0
# partial volume
# 1 = lesion, 2 = WM, 3 = GM, 4 = CSF
v = 0.02 * torch.arange(50).to(self.device)
mus[100:150] = mus[1] * (1 - v) + mus[2] * v
mus[150:200] = mus[2] * (1 - v) + mus[3] * v
mus[200:250] = mus[3] * (1 - v) + mus[4] * v
mus[250] = mus[4]
sigmas[100:150] = torch.sqrt(sigmas[1]**2 * (1 - v) + sigmas[2]**2 * v)
sigmas[150:200] = torch.sqrt(sigmas[2]**2 * (1 - v) + sigmas[3]**2 * v)
sigmas[200:250] = torch.sqrt(sigmas[3]**2 * (1 - v) + sigmas[4]**2 * v)
sigmas[250] = sigmas[4]
return mus, sigmas
def get_setup_params(self):
if self.synth_args.left_hemis_only:
hemis = 'left'
else:
hemis = 'both'
if self.synth_args.low_res_only:
photo_mode = False
elif self.synth_args.left_hemis_only:
photo_mode = True
else:
photo_mode = np.random.rand() < self.synth_args.photo_prob
pathol_mode = np.random.rand() < self.synth_args.pathology_prob
pathol_random_shape = np.random.rand() < self.synth_args.random_shape_prob
spac = 2.5 + 10 * np.random.rand() if photo_mode else None
flip = np.random.randn() < self.synth_args.flip_prob if not self.synth_args.left_hemis_only else False
if photo_mode:
resolution = np.array([self.res_training_data[0], spac, self.res_training_data[2]])
thickness = np.array([self.res_training_data[0], 0.1, self.res_training_data[2]])
else:
resolution, thickness = resolution_sampler(self.synth_args.low_res_only)
return {'resolution': resolution, 'thickness': thickness,
'photo_mode': photo_mode, 'pathol_mode': pathol_mode,
'pathol_random_shape': pathol_random_shape,
'spac': spac, 'flip': flip, 'hemis': hemis}
def encode_pathology(self, I, P, Pprob, pathol_direction = None):
if pathol_direction is None: # True: T2/FLAIR-resembled, False: T1-resembled
pathol_direction = random.choice([True, False])
P, Pprob = torch.squeeze(P), torch.squeeze(Pprob)
I_mu = (I * P).sum() / P.sum()
p_mask = torch.round(P).long()
#pth_mus = I_mu/4 + I_mu/2 * torch.rand(10000, dtype=torch.float, device=self.device)
pth_mus = 3*I_mu/4 + I_mu/4 * torch.rand(10000, dtype=torch.float, device=self.device) # enforce the pathology pattern harder!
pth_mus = pth_mus if pathol_direction else -pth_mus
pth_sigmas = I_mu/4 * torch.rand(10000, dtype=torch.float, device=self.device)
I += Pprob * (pth_mus[p_mask] + pth_sigmas[p_mask] * torch.randn(p_mask.shape, dtype=torch.float, device=self.device))
I[I < 0] = 0
#print('encode', P.shape, P.mean())
#print('pre', I_mu)
#I_mu = (I * P).sum() / P.sum()
#print('post', I_mu)
return I
def get_info(self, t1):
t1dm = t1[:-7] + 'T1w.defacingmask.nii'
t2 = t1[:-7] + 'T2w.nii'
t2dm = t1[:-7] + 'T2w.defacingmask.nii'
flair = t1[:-7] + 'FLAIR.nii'
flairdm = t1[:-7] + 'FLAIR.defacingmask.nii'
ct = t1[:-7] + 'CT.nii'
ctdm = t1[:-7] + 'CT.defacingmask.nii'
generation_labels = t1[:-7] + 'generation_labels.nii'
segmentation_labels = t1[:-7] + self.gen_args.segment_prefix + '.nii'
#brain_dist_map = t1[:-7] + 'brain_dist_map.nii'
lp_dist_map = t1[:-7] + 'lp_dist_map.nii'
rp_dist_map = t1[:-7] + 'rp_dist_map.nii'
lw_dist_map = t1[:-7] + 'lw_dist_map.nii'
rw_dist_map = t1[:-7] + 'rw_dist_map.nii'
mni_reg_x = t1[:-7] + 'mni_reg.x.nii'
mni_reg_y = t1[:-7] + 'mni_reg.y.nii'
mni_reg_z = t1[:-7] + 'mni_reg.z.nii'
self.modalities = {'T1': t1, 'Gen': generation_labels, 'segmentation': segmentation_labels,
'distance': [lp_dist_map, lw_dist_map, rp_dist_map, rw_dist_map],
'registration': [mni_reg_x, mni_reg_y, mni_reg_z]}
if os.path.isfile(t1dm):
self.modalities.update({'T1_DM': t1dm})
if os.path.isfile(t2):
self.modalities.update({'T2': t2})
if os.path.isfile(t2dm):
self.modalities.update({'T2_DM': t2dm})
if os.path.isfile(flair):
self.modalities.update({'FLAIR': flair})
if os.path.isfile(flairdm):
self.modalities.update({'FLAIR_DM': flairdm})
if os.path.isfile(ct):
self.modalities.update({'CT': ct})
if os.path.isfile(ctdm):
self.modalities.update({'CT_DM': ctdm})
return self.modalities
def read_input(self, idx):
"""
determine input type according to prob (in generator/constants.py)
Logic: if np.random.rand() < real_image_prob and is real_image_exist --> input real images; otherwise, synthesize images.
"""
dataset_name, input_prob, t1_path, age = self.idx_to_path(idx)
case_name = os.path.basename(t1_path).split('.T1w.nii')[0]
self.modalities = self.get_info(t1_path)
prob = np.random.rand()
if prob < input_prob['T1'] and 'T1' in self.modalities:
input_mode = 'T1'
img, aff, res = read_image(self.modalities['T1'])
elif prob < input_prob['T2'] and 'T2' in self.modalities:
input_mode = 'T2'
img, aff, res = read_image(self.modalities['T2'])
elif prob < input_prob['FLAIR'] and 'FLAIR' in self.modalities:
input_mode = 'FLAIR'
img, aff, res = read_image(self.modalities['FLAIR'])
elif prob < input_prob['CT'] and 'CT' in self.modalities:
input_mode = 'CT'
img, aff, res = read_image(self.modalities['CT'])
else:
input_mode = 'synth'
img, aff, res = read_image(self.modalities['Gen'])
return dataset_name, case_name, input_mode, img, aff, res, age
def read_and_deform_target(self, idx, exist_keys, task_name, input_mode, setups, deform_dict, linear_weights = None):
current_target = {}
p_prob_path, augment, thres = None, False, 0.1
if task_name == 'pathology':
# NOTE: for now - encode pathology only for healthy cases
# TODO: what to do if the case has pathology itself? -- inconsistency between encoded pathol and the output
if self.pathology_type is None: # healthy
if setups['pathol_mode']: # and input_mode == 'synth':
if setups['pathol_random_shape']:
p_prob_path = 'random_shape'
augment, thres = False, self.shape_gen_args.pathol_thres
else:
p_prob_path = random.choice(pathology_prob_paths)
augment, thres = self.synth_args.augment_pathology, self.shape_gen_args.pathol_thres
else:
pass
#p_prob_path = self.modalities['pathology_prob']
current_target = processing_funcs[task_name](exist_keys, task_name, p_prob_path, setups, deform_dict, self.device,
mask = self.hemis_mask,
augment = augment,
pde_func = self.adv_pde,
t = self.t,
shape_gen_args = self.shape_gen_args,
thres = thres
)
else:
if task_name in self.modalities:
current_target = processing_funcs[task_name](exist_keys, task_name, self.modalities[task_name],
setups, deform_dict, self.device,
mask = self.hemis_mask,
cfg = self.gen_args,
onehotmatrix = self.onehotmatrix,
lut = self.lut, vflip = self.vflip
)
else:
current_target = {task_name: 0.}
return current_target
def update_gen_args(self, new_args):
for key, value in vars(new_args).items():
vars(self.gen_args.generator)[key] = value
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
# read input: real or synthesized image, according to customized prob
dataset_name, case_name, input_mode, img, aff, res, age = self.read_input(idx)
# generate random values
setups = self.get_setup_params()
# sample random deformation
deform_dict = self.generate_deformation(setups, img.shape)
# get left_hemis_mask if needed
self.get_left_hemis_mask(deform_dict['grid'])
# read and deform target according to the assigned tasks
target = defaultdict(lambda: None)
target['name'] = case_name
target.update(self.read_and_deform_target(idx, target.keys(), 'T1', input_mode, setups, deform_dict))
target.update(self.read_and_deform_target(idx, target.keys(), 'T2', input_mode, setups, deform_dict))
target.update(self.read_and_deform_target(idx, target.keys(), 'FLAIR', input_mode, setups, deform_dict))
for task_name in self.tasks:
if task_name in processing_funcs.keys() and task_name not in ['T1', 'T2', 'FLAIR']:
target.update(self.read_and_deform_target(idx, target.keys(), task_name, input_mode, setups, deform_dict))
# process or generate input sample
if input_mode == 'synth':
self.update_gen_args(self.synth_image_args) # severe noise injection for real images
target['pathology'], target['pathology_prob'], sample = \
self.generate_sample(case_name, img, setups, deform_dict, res, target)
else:
self.update_gen_args(self.real_image_args) # milder noise injection for real images
sample = self.augment_sample(case_name, img, setups, deform_dict, res, target,
pathol_direction = self.get_pathology_direction(input_mode),input_mode = input_mode)
if setups['flip'] and isinstance(target['pathology'], torch.Tensor): # flipping should happen after P has been encoded
target['pathology'], target['pathology_prob'] = torch.flip(target['pathology'], [1]), torch.flip(target['pathology_prob'], [1])
if age is not None:
target['age'] = age
return self.datasets_num, dataset_name, input_mode, target, sample
# An example of customized dataset from BaseSynth
class BrainIDGen(BaseGen):
"""
BrainIDGen dataset
BrainIDGen enables intra-subject augmentation, i.e., each subject will have multiple augmentations
"""
def __init__(self, gen_args, device='cpu'):
super(BrainIDGen, self).__init__(gen_args, device)
self.all_samples = gen_args.generator.all_samples
self.mild_samples = gen_args.generator.mild_samples
self.mild_generator_args = gen_args.mild_generator
self.severe_generator_args = gen_args.severe_generator
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
# read input: real or synthesized image, according to customized prob
dataset_name, case_name, input_mode, img, aff, res, age = self.read_input(idx)
# generate random values
setups = self.get_setup_params()
# sample random deformation
deform_dict = self.generate_deformation(setups, img.shape)
# get left_hemis_mask if needed
self.get_left_hemis_mask(deform_dict['grid'])
# read and deform target according to the assigned tasks
target = defaultdict(lambda: 1.)
target['name'] = case_name
target.update(self.read_and_deform_target(idx, target.keys(), 'T1', input_mode, setups, deform_dict))
target.update(self.read_and_deform_target(idx, target.keys(), 'T2', input_mode, setups, deform_dict))
target.update(self.read_and_deform_target(idx, target.keys(), 'FLAIR', input_mode, setups, deform_dict))
for task_name in self.tasks:
if task_name in processing_funcs.keys() and task_name not in ['T1', 'T2', 'FLAIR']:
target.update(self.read_and_deform_target(idx, target.keys(), task_name, input_mode, setups, deform_dict))
# process or generate intra-subject input samples
samples = []
for i_sample in range(self.all_samples):
if i_sample < self.mild_samples:
self.update_gen_args(self.mild_generator_args)
if input_mode == 'synth':
self.update_gen_args(self.synth_image_args)
target['pathology'], target['pathology_prob'], sample = \
self.generate_sample(case_name, img, setups, deform_dict, res, target)
else:
self.update_gen_args(self.real_image_args)
sample = self.augment_sample(case_name, img, setups, deform_dict, res, target,
pathol_direction = self.get_pathology_direction(input_mode),input_mode = input_mode)
else:
self.update_gen_args(self.severe_generator_args)
if input_mode == 'synth':
self.update_gen_args(self.synth_image_args)
target['pathology'], target['pathology_prob'], sample = \
self.generate_sample(case_name, img, setups, deform_dict, res, target)
else:
self.update_gen_args(self.real_image_args)
sample = self.augment_sample(case_name, img, setups, deform_dict, res, target,
pathol_direction = self.get_pathology_direction(input_mode),input_mode = input_mode)
samples.append(sample)
if setups['flip'] and isinstance(target['pathology'], torch.Tensor): # flipping should happen after P has been encoded
target['pathology'], target['pathology_prob'] = torch.flip(target['pathology'], [1]), torch.flip(target['pathology_prob'], [1])
if age is not None:
target['age'] = age
return self.datasets_num, dataset_name, input_mode, target, samples |