File size: 2,002 Bytes
47bc39b f7e366e 47bc39b f7e366e 47bc39b f7e366e 47bc39b f7e366e 47bc39b f7e366e 47bc39b f7e366e 47bc39b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: google/flan-t5-small
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
model-index:
- name: flan-t5-small-comma-correction
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-t5-small-comma-correction
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0662
- Gen Len: 39.2167
- Em Ic: 0.934
- Em: 0.5759
- Precision: 0.9177
- Recall: 0.7736
- F1: 0.7575
- Levinstein Ratio: 0.9954
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 200
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Gen Len | Em Ic | Em | Precision | Recall | F1 | Levinstein Ratio |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:---------:|:------:|:------:|:----------------:|
| 0.0694 | 1.0 | 2159 | 0.0696 | 39.1396 | 0.9299 | 0.5543 | 0.9178 | 0.7509 | 0.7366 | 0.9951 |
| 0.0558 | 2.0 | 4318 | 0.0670 | 39.1904 | 0.9334 | 0.5736 | 0.9195 | 0.7678 | 0.7537 | 0.9954 |
| 0.0542 | 3.0 | 6477 | 0.0662 | 39.2167 | 0.934 | 0.5759 | 0.9177 | 0.7736 | 0.7575 | 0.9954 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|