File size: 3,103 Bytes
8a03b50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
language:
- tr
license: apache-2.0
tags:
- automatic-speech-recognition
- common_voice
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-300m-common_voice-tr-ft
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-300m-common_voice-tr-ft

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - TR dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3644
- Wer: 0.3394
- Cer: 0.0811

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
| 1.6613        | 4.59  | 500   | 0.8079          | 0.8542 | 0.2504 |
| 1.3496        | 9.17  | 1000  | 0.4729          | 0.5968 | 0.1518 |
| 1.1003        | 13.76 | 1500  | 0.4106          | 0.5225 | 0.1357 |
| 1.1532        | 18.35 | 2000  | 0.3957          | 0.4978 | 0.1256 |
| 1.0305        | 22.94 | 2500  | 0.3764          | 0.5008 | 0.1291 |
| 0.8303        | 27.52 | 3000  | 0.3826          | 0.5113 | 0.1292 |
| 0.9115        | 32.11 | 3500  | 0.3819          | 0.4324 | 0.1070 |
| 0.8193        | 36.7  | 4000  | 0.3694          | 0.4223 | 0.1036 |
| 0.8948        | 41.28 | 4500  | 0.3714          | 0.4100 | 0.1005 |
| 0.774         | 45.87 | 5000  | 0.3558          | 0.3923 | 0.0971 |
| 0.8194        | 50.46 | 5500  | 0.3729          | 0.4603 | 0.1180 |
| 0.8616        | 55.05 | 6000  | 0.3616          | 0.3908 | 0.0963 |
| 0.7901        | 59.63 | 6500  | 0.3575          | 0.3837 | 0.0952 |
| 0.778         | 64.22 | 7000  | 0.3732          | 0.3790 | 0.0928 |
| 0.7238        | 68.81 | 7500  | 0.3674          | 0.3734 | 0.0904 |
| 0.6985        | 73.39 | 8000  | 0.3627          | 0.3615 | 0.0863 |
| 0.5889        | 77.98 | 8500  | 0.3705          | 0.3548 | 0.0858 |
| 0.5447        | 82.57 | 9000  | 0.3678          | 0.3534 | 0.0854 |
| 0.4763        | 87.16 | 9500  | 0.3627          | 0.3509 | 0.0840 |
| 0.3544        | 91.74 | 10000 | 0.3690          | 0.3495 | 0.0834 |
| 0.4879        | 96.33 | 10500 | 0.3683          | 0.3418 | 0.0820 |


### Framework versions

- Transformers 4.13.0.dev0
- Pytorch 1.9.0+cu111
- Datasets 1.15.2.dev0
- Tokenizers 0.10.3